INVESTIGATION OF THE EFFECT USING DIFFERENT COOLANT ON THE PERFORMANCE OF A TOKAMAK FUSION REACTOR BLANKET

In this study, magnetic fusion reactor modeling with spherical geometry has been completed for the first wall load 5 MW/m2 (2.22 x 1014 n/s) and 500 MW fusion power. In the modeled fusion reactor, D-T fuel was used in the plasma region. Within the scope of five different models, 1DS-ODS steel in the first wall region and Flibe, Flina, Flinak Flinabe and Li materials were used in the cooling zone of the reactor. In the first stage of this study, tritium breeding ratio (TBR), energy multiplication factor (M) and heat flux of the reactor were calculated for five different cooling materials. In the second stage of the study heat flux gas production and DPA values in the first wall region and nuclear heat generation in the magnet layer were calculated by using Monte Carlo methods with Monte Carlo neutron‐photon transport code and nuclear libraries named as ENDF/B‐VI and CLAW‐IV. According to investigated models, it was observed that the density of lithium isotopes in the coolant material and produced in the reactor TBR and M were directly proportional. In all models with high neutron density, the minimum TBR (≥1.05) required for the operation of the reactors was obtained. In this context, the models which contains lithium and Flibe as coolants, they showed the best neutronic performance according to all considerations.

___

  • 1) Al Kusayer T.A., Şahin S. & Drira A. (1988). “CLAW-IV, Coupled 30 Neutrons, 12 Gamma- Ray Group Cross Section With Retrieval Programs for Radiation Transport Calculations”, available from the Radiation Shielding Information Center, Oak Ridge National Lab., RSIC-Newsletter.
  • 2) Bohm, T. D., Sawan, M. E., Jackson, S. T., & Wilson, P. P. (2012). Detailed nuclear analysis of ITER ELM coils. Fusion Engineering and Design. 87, 5-6, 657-661. doi:10.1016/j.fusengdes.2012.01.031
  • 3) Cadwallader, L. C. (2001). Qualitative Reliability Issues for In-Vessel Solid and Liquid Wall Fusion Designs. Fusion Technology. 39(2P2), 991-995. doi:10.13182/fst01-a11963371
  • 4) Catalán, J., Ogando, F., Sanz, J., Palermo, I., Veredas, G., Gómez-Ros, J., & Sedano, L. (2011). Neutronic analysis of a dual He/LiPb coolant breeding blanket for DEMO. Fusion Engineering and Design. 86, 9-11, 2293-2296. doi:10.1016/j.fusengdes.2011. 03.030
  • 5) Dobran, F. (2012). Fusion energy conversion in magnetically confined plasma reactors. Progress in Nuclear Energy. 60, 89-116. doi:10.1016/j.pnucene.2012.05.008
  • 6) El-Guebaly, L. A. (2010). Fifty Years of Magnetic Fusion Research (1958–2008): Brief Historical Overview and Discussion of Future Trends. Energies. 3, 6, 1067-1086. doi:10.3390/en30601067
  • 7) El-Guebaly, L. A. (1991). Overview of the US-ITER magnet shield: Concept and problems. Fusion Technology. 19(3P2B), 1475-1480. doi:10.13182/fst91-a29549
  • 8) Ishibashi, K., Fujimoto, S., & Matsumoto, T. (2014). An optimization study of structure materials, coolant and tritium breeding materials for nuclear fusion-fission hybrid reactor. Progress in Nuclear Science and Technology. 4, 130-133. doi:10.15669/ pnst.4.130
  • 9) Jolodosky, A., & Fratoni, M. (2015). Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets. doi:10.2172/1223840 10) Krakowski, R. A., Bathke, C. G., Miller, R. L., & Werley, K. A. (1994). Lessons Learned from the Tokamak Advanced Reactor Innovation and Evaluation Study (ARIES). Fusion Technology. 26(3P2), 1111-1118. doi:10.13182/fst94-a40302
  • 11) Rose PF (compiler and editor). ENDF‐201, ENDF/B‐VI summary documentation, BNL‐NCS‐17541. Brookhaven National Laboratory 1991.
  • 12) Sawan, M., & Abdou, M. (2006). Physics and technology conditions for attaining tritium self-sufficiency for the DT fuel cycle. Fusion Engineering and Design. 81, 8-14, 1131-1144. doi:10.1016/j.fusengdes.2005.07.035
  • 13) Şahin, H. M., Tunç, G., & Şahin, N. (2016). Investigation of tritium breeding ratio using different coolant material in a fusion–fission hybrid reactor. International Journal of Hydrogen Energy. 41, 17, 7069-7075. doi:10.1016/j.ijhydene.2015.11.174
  • 14) Şahin, S., & Şahin, H. M. (1999). Radiation shielding mass saving for the magnet coils of the VISTA spacecraft. Annals of Nuclear Energy. 26, 6, 509-521. doi:10.1016/s0306-4549(98)00066-8
  • 15) Şahin, S., Şahin, H. M., & Sözen, A. (1998). Evaluation of the Neutron and Gamma-Ray Heating in the Radiation Shielding and Magnet Coils of the VISTA Spacecraft. Fusion Technology. 33, 4, 418-434. doi:10.13182/fst98-a41
  • 16) Tunç, G., Şahin, H. M., & Şahin, S. (2017). Evaluation of the radiation damage parameters of ODS steel alloys in the first wall of deuterium-tritium fusion-fission (hybrid) reactors. International Journal of Energy Research. 42, 1), 198-206. doi:10.1002/er.3782
  • 17) UW NCOE ARIES Project. (2014, May 20). Retrieved from https://fti.neep.wisc.ed u/ncoe/aries
  • 18) Übeyli, M. (2003). On the Tritium Breeding Capability of Flibe, Flinabe, and Li20Sn80 in a Fusion-Fission (Hybrid) Reactor. Journal of Fusion Energy. 22, 1, 51-57. doi:10.1023/b:jofe.0000021555.70423.f1
  • 19) Vicente, S. M., Dudarev, S., & Rieth, M. (2014). Overview of the Structural Materials Program for Fusion Reactors under EFDA. Fusion Science and Technology. 66, 1, 38-45. doi:10.13182/fst13-764
  • 20) X‐5 Monte CarloTeam. MCNP5-a general Monte Carlo, N‐particle transport code version 5, LA‐CP 03‐0245. Los Alamos National Laboratory 2005.
  • 21) Zandi, N., Sadeghi, H., Habibi, M., Jalali, I., & Zare, M. (2015). Blanket Simulation and Tritium Breeding Ratio Calculation for ITER Reactor. Journal of Fusion Energy. 34, 6, 1365-1368. doi:10.1007/s10894-015-9970-z.