Çevreyi ve insan sağlığını koruyan antibakteriyel malzemelerle bitim işlemi son yıllarda önem kazanmaktadır. Bu çalışmanın amacı da 1) kitosanı nano-gümüş (Ag) kaplamalar için bağlayıcı olarak kullanarak yeni nesil antibakteriyel apreler geliştirmek, 2) karides ve kerevitlerden üretilen kitosanın tekstil üretimi için uygulanabilirliğini belirlemek ve 3) çevre dostu tekstil üretimine katkıda bulunmaktır. Çalışmada, karides ve kerevit atıklarından üretilen kitosan, Ag nanopartiküllerinin kumaş yüzeylerine bağlanmasında yapışkan olarak kullanılmıştır. Nano-Ag partiküllerinin kitosan aracılığıyla kumaş yüzeylerine bağlanma özellikleri Fourier dönüşümlü kızılötesi spektroskopi (FTIR), Taramalı elektron mikroskobu (SEM) ve Enerji dağılımlı x ışını (EDX) analizleri ile incelenmiştir. Kumaşların Escherichia coli ATCC 8739' ye karşı antibakteriyel aktiviteleri JIS L 1902-2015 standardına göre test edilmiştir. Çalışmanın sonuçları kerevit ve karides kitosanlarının renksiz bir film oluşturduğunu ve Ag nanoparçacıklarını pamuklu kumaş üzerine homojen bir şekilde kapladığını göstermiştir. Kerevit kitosanı ve karides kitosanı ile kaplı pamuklu kumaşların antibakteriyel aktivite değerleri sırasıyla, 3,10 ve 5,74 olarak hesaplanırken, kerevit kitosanı+nano-Ag ve karides kitosanı+nano-Ag ile kaplanmış pamuklu kumaşların antibakteriyel aktivite değerleri sırasıyla 5,37 ve 5,10 olarak bulundu. E. coli ATCC 8739' ye karşı iyi bir antibakteriyel aktivite sergileyen (% 99,99 azalma) kitosan+nano-Ag kaplamalar, tıbbi tekstiller, bebek kıyafetleri ve iç çamaşırları gibi giysilerin imalatında kullanılabilir. Binder olarak kitosanın kullanılması, tekstil baskısında, pigment boyamada, terbiye maddelerinde, kirletici deşarjlarında ve endüstriyel kaynaklı emisyonlarda kimyasalların kullanımını azaltabilir. Ayrıca, insan ve çevre sağlığının korunmasına yönelik yenilikçi çözümler sunar.

TEXTILE FINISHING WITH CHITOSAN AND SILVER NANOPARTICLES AGAINST Escherichia coli ATCC 8739

The finishing process with the antibacterial agents that protect the environment and human health is gaining importance. This study aims 1) to develop new generation antibacterial finishes using chitosan as a binder for nano-Ag coatings, 2) to determine the applicability of chitosan from shrimp and crayfish for textile production and 3) to contribute to environmentally friendly textile production. Chitosan from shrimp and crayfish wastes were used as adhesive in the binding of nanoparticles to fabric surfaces. The bonding properties of the nano-Ag particles on the fabric surfaces were investigated by Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), and Energy dispersive x-ray spectroscopy (EDX) analysis. The antibacterial effectiveness of fabrics against Escherichia coli ATCC 8739 were tested according to JIS L 1902-2015 standard. The crayfish and shrimp chitosan formed a colorless film and coated the nano-Ag particles homogeneously on the cotton fabric. Antibacterial activity values were calculated as 3.10 and 5.74 for crayfish and shrimp chitosan coated cotton fabrics and as 5.37 and 5.10 for crayfish and shrimp chitosan+nano Ag coated cotton fabrics, respectively. Chitosan nano-Ag coating which exhibited a good antibacterial activity (99.99% reduction) against E. coli ATCC 8739 can be used in the manufacture of garments such as medical textiles, baby clothes, and underwear. The use of chitosan as a binder can reduce the use of chemicals in textile printing and pigment dying in finishing materials, pollutant discharges and emissions from industrial sources. Also, it presents innovative solutions for the protection of human and environmental health.

___

  • 1. Abdou, S.E., Nagy, K.S.A. & Elsabee, M.Z. 2008. Extraction and characterization of chitin and chitosan from local sources. Bioresource Technology, 99(5): 1359-1367.
  • 2. Akaydın, M. & Kalkancı, M. 2014. A research on antibacterial properties of woven fabrics using for hospital clothing. SDU Journal of Science (E-Journal), 9(1): 20-34.
  • 3. Anitha, A., Sowmya, S., Sudheesh Kumar, P.T., Deepthi, S., Chennazhi, K.P., Ehrlich, H., Tsurkan, M. & Jayakumar, R. 2014. Chitin and chitosan in selected biomedical applications. Progress in Polymer Science, 39(9): 1644-1667.
  • 4. Arif, D., Niazi, M.B.K., Ul-Haq, N., Anwar, M.N. & Hashmi, E. 2015. Preparation of antibacterial cotton fabric using chitosan-silver nanoparticles. Fibers and Polymers, 16(7): 1519-1526.
  • 5. Arrouze, F., Essahli, M., Rhazi, M., Desbrieres, J. & Tolaimate, A. 2017. Chitin and chitosan: Study of the possibilities of their production by valorization of the waste of crustaceans and cephalopods rejected in Essaouira. Journal of Materials and Environmental Sciences, 8: 2251-2258.
  • 6. Becenen, N. & Altun, Ö. 2016. Applications of TiO2, ZnO and Ag nano materials to denim fabric. Journal of Nanoscience and Nanotechnology, 16(5): 5359-5363.
  • 7. Burdusel, A.C., Gherasim, O., Grumezescu, A.M., Mogoanta, L., Ficai, A. & Andronescu, E. 2018. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials, 8, 681. https://doi.org/10.3390/nano8090681.
  • 8. Chattopadhyay, D. & Inamdar, M.S. 2013. Improvement in properties of cotton fabrich through sythesized nano-chitosan application. Indian Journal of Fibre & Textile Research, 38: 14-21.
  • 9. Chen, Q., Jiang, H., Ye, H., Li, J. & Huang, J. 2014. Preparation, antibacterial, and antioxidant activities of silver/chitosan composites. Journal of Carbohydrate Chemistry, 0: 1-15.
  • 10. Colclasure, V.J., Soderquist, T.J., Lynch, T., Schubert, N., McCormick, D.S., Urrutia, E., Knickerbocker, C., McCord, D. & Kavouras, J.H. 2015. Coliform bacteria, fabrics, and the environment. American Journal of Infection Control, 43: 154-158.
  • 11. Dahmane, E.M., Taourirte, M., Eladlani, N. & Rhazi, M. 2016. Preparation and characterization of α-chitin whiskers, chitosan, nanoparticles and chitosan nanoscaffold from Parapenaeus longirostris. Materials Today: Proceedings, 3: 2590-2598.
  • 12. Dash, M., Chiellini, F., Ottenbrite, R.M. & Chiellini, E. 2011. Chitosan-a versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science, 36: 981-1014.
  • 13. Dutta, P.K., Dutta, J. & Tripathi, V.S. 2004. Chitin and chitosan: chemistry, properties and applications. Journal of Scientific and Industrial Research, 63: 20-31.
  • 14. Edwards Jones, V. 2009. The benefits of silver in hygiene, personal care and healthcare. Letters in Applied Microbiology, 49(2): 147-152.
  • 15. Erdogan, S. & Kaya, M. 2016. High similarity in physicochemical properties of chitin and chitosan from nymphs and adults of a grasshopper. International Journal of Biological Macromolecules, 89: 118-126.
  • 16. Erdogan, S., Kaya, M. & Akata, I. 2017. Chitin extraction and chitosan production from cell wall of two mushroom species (Lactarius vellereus and Phyllophora ribis). AIP Conference Proceedings, 1809: 020012. https://doi.org/10.1063/1.4975427.
  • 17. Fan, Q., Maa, J., Xua, Q., Ana, W. & Qiua, R. 2018. Multifunctional coatings crafted via layer-by-layer spraying method. Progress in Organic Coatings, 125: 215-221.
  • 18. Focher, B., Naggi, A., Torri, G., Cosani, A. & Terbojevich, M. 1992. Structural differences between chitin polymorphs and their precipitates from solutions-evidence from CP-MAS, 13CNMR, FT-IR and FT-Raman spectroscopy. Carbohydrate Polymers, 17: 97-102.
  • 19. Gharibshahi, L., Saion, E., Gharibshahi, E., Shaari, A.H. & Matori, K.A. 2017. Structural and optical properties of Ag nanoparticles synthesized by thermal treatment method. Materials, 10: 402. https://doi.org/10.3390/ma10040402.
  • 20. Govindan, S., Nivethaa, E.A.K., Saravanan, R., Narayanan, V. & Stephen, A. 2012. Synthesis and characterization of chitosan–silver nanocomposite. Applied Nanoscience, 2: 299-303.
  • 21. Hartemann, P., Hoet, P., Proykova, A., Fernandes, T., Baun, A., De Jong, W., Filser, J., Hensten, A., Kneuer, C., Maillard, J. Y., Norppa, H., Scheringer, M. & Wijnhoven, S. 2015. Nanosilver: Safety, health and environmental effects and role in antimicrobial resistance. Materials Today, 18(3): 1369-7021.
  • 22. Islam, S. & Butola, B.S. 2019. Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. International Journal of Biological Macromolecules, 121: 905-912.
  • 23. JIS L 1902: 2015. Japanese Industry Standard for Testing Antibacterial Activity and Efficiency in Textile Products.
  • 24. Jiang, S.X., Qin, W.F., Guo, R.H. & Zhang, L. 2010. Surface functionalization of nanostructured silver-coated polyester fabric by magnetron sputtering. Surface and Coatings Technology, 204: 3662-3667.
  • 25. Korani, M., Rezayat, S.M. & Arbabi Bidgoli, S. 2013. Sub-chronic dermal toxicity of silver nanoparticles in guinea pig: special emphasis to heart, bone and kidney toxicities. Iranian Journal of Pharmaceutical Research, 12: 511-519.
  • 26. Korani, M., Ghazizadeh, E., Korani, S., Hami, Z. & Mohammadi-Bardbori, A. 2015. Effects of silver nanoparticles on human health. European Journal of Nanomedicine, 7(1): 51-62.
  • 27. Kumirska, J., Weinhold, M.X., Thoming, J. & Stepnowski, P. 2011. Biomedical activity of chitin/chitosan based materials influence of physicochemical properties apart from molecular weight and degree of N-acetylation. Polymers, 3: 1875-1901.
  • 28. Lavall, R.L., Assis, O.B.G. & Campana, S.P. 2007. Beta-chitin from the pens of Loligo sp.: Extraction and characterization. Bioresource Technology, 98: 2465-2472.
  • 29. Li, C.W., Wang, Q., Li, J., Hu, M., Shi, S.J., Li, Z.W., Wu, G.L., Cui, H.H., Li, Y.Y. & Zhang, Q. 2016. Silver nanoparticles/chitosan oligosaccharide/poly(vinyl alcohol) nanofiber promotes wound healing by activating TGFβ1/Smad signaling pathway. International Journal of Nanomedicine, 11: 373-387.
  • 30. Liang, S., Sun, Y. & Dai, X. 2018. A review of the preparation, analysis and biological functions of chitooligosaccharide. International Journal of Molecular Sciences, 19, 2197. https://doi.org/10.3390/ijms19082197. 31. Marambio Jones, C. & Hoek, E.M.V. 2010. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12: 1531-1551.
  • 32. Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramírez, J.T. & Yacaman, M.J. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology, 16: 2346-2353.
  • 33. Mujtaba M., Kaya, M., Bulut, E. & Akyuz, B. 2016. Recycling and physicochemical characterization of pomegranate waste peels into a green material (cellulose), 448-456. Paper presented at the International Conference on Natural Science and Engineering (ICNASE’16), 19-20 March, Kilis-Turkey.
  • 34. Murugan, K., Anitha, J., Suresh, U., Rajaganesh, R., Panneerselvam, C., Aziz, A.T., Tseng, L.C., Kalimuthu, K., Alsalhi, M.S., Devanesan, S., Nicoletti, M., Sarkar, S.K., Benelli, G. & Hwang, J.S. 2017. Chitosan-fabricated Ag nanoparticles and larvivorous fishes: a novel route to control the coastal malaria vector Anopheles sundaicus? Hydrobiologia, 797(1): 335-350.
  • 35. Palamutçu, S., Şengül, M., Devrent, N. & Keskin, R. 2008. Tekstil ürünlerinde antimikrobiyal etkinlik belirleme testleri, 25-33. Paper presented at the VII. Ulusal Ölçümbilim Kongresi, 30 Ekim-1 Kasım 2008, İzmir, Turkey.
  • 36. Panácek, A., Kvítek, L., Prucek, R., Kolár, M., Vecerová, R., Pizúrová, N., Sharma, V.K., Nevecná, T. & Zboril, R. 2006. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry B, 110: 16248-16253.
  • 37. Pevzner, H. 2018. What is E. coli? Symptoms, treatment, prevention, and more. (https://www.everydayhealth.com/e-coli/), (Date accessed: 17.11.2019).
  • 38. Pinho, E., Magalhães, L., Henriques, M. & Oliveira, R. 2011. Antimicrobial activity assessment of textiles: standard methods comparison. Annals of Microbiology, 61: 493-498.
  • 39. Rehan, M., El-Naggara, M.E., Mashaly, H.M. & Wilken, R. 2018. Nanocomposites based on chitosan/silver/clay for durable multi-functional properties of cotton fabrics. Carbohydrate Polymers, 182: 29-41.
  • 40. Rinaudo, M. 2006. Chitin and chitosan: properties and applications. Progress in Polymer Science, 31(7): 603-632.
  • 41. Rivero, P.J., Urrutia, A., Goicoechea, J. & Arregui, F.J. 2015. Nanomaterials for functional textiles and fibers. Nanoscale Research Letters, 10: 501. https://doi.org/10.1186/s11671-015-1195-6.
  • 42. Scacchetti, F.A.P., Pinto, E. & Soares, G.M.B. 2018. Thermal and antimicrobial evaluation of cotton functionalized with a chitosan–zeolite composite and microcapsules of phase-change materials. Journal of Applied Polymer Science, 135: 46135. https://doi.org/10.1002/app.46135.
  • 43. SCENIHR, 2014. Opinion on nanosilver: safety, health and environmental effects and role in antimicrobial resistance. (https://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_039.pdf), (Date accessed: 20 November 2019)
  • 44. Sher, F., Malik, A. & Liu, H. 2013. Industrial polymer effluent treatment by chemical coagulation and flocculation. Journal of Environmental Chemical Engineering, 1: 684-689.
  • 45. Song, Y.S., Kim, Y.M.W., Moon, C., Seo, D.J., Han, Y.S., Jo, Y.H., Noh, M.Y., Park Y.K., Kim, S.A., Kim, Y.W. & Jung, W.J. 2018. Extraction of chitin and chitosan from larval exuvium and whole body of edible mealworm, Tenebrio molitor. Entomological Research, 48: 227-233.
  • 46. Souza, J., Matos, J., Fernandes, M., Zille, A. & Fangueiro, R. 2017. Coated chitosan onto gauze to efficient conditions for maintenance of the wound microenvironment. Procedia Engineering, 200: 135-140.
  • 47. Şahan, G. & Demir, A. 2016. Tekstil terbiyesinde nano boyutta kitosanın yeşil uygulaması. Tekstil ve Konfeksiyon, 26 (4): 414-420.
  • 48. Tania, I.S., Ali, M. & Azam, S. 2019. In‑situ synthesis and characterization of silver nanoparticle decorated cotton knitted fabric for antibacterial activity and improved dyeing performance. SN Applied Sciences, 1: 64. https://doi.org/10.1007/s42452-018-0068-x.
  • 49. Torlak, E. 2008. Measurement uncertainty in testing for antimicrobial activity on textile materials. Accreditation and Quality Assurance, 13: 563-566.
  • 50. Xu, Q.B., Zheng, W.S., Duan, P.P., Chen, J.N., Zhang, Y.Y., Fu, F.Y, Diao, H.Y. & Liu, X.D. 2019. One-pot fabrication of durable antibacterial cotton fabric coated with silver nanoparticles via carboxymethyl chitosan as a binder and stabilizer. Carbohydrate Polymers, 204: 42-49.
  • 51. Velmurugan, P., Lee, S.M., Cho, M., Park, J.H., Seo, S.K., Myung, H., Bang, K.S. & Oh, B.T. 2014. Antibacterial activity of silver nanoparticle-coated fabric and leather against odor and skin infection causing bacteria. Applied Microbiology and Biotechnology, 98: 8179-8189.
  • 52. Wang, C., Lv, J., Ren, Y., Zhou, Q., Chen, J., Zhi, T., Lu, Z., Gao, D., Ma, Z. & Jin, L. 2016. Cotton fabric with plasma pretreatment and ZnO/Carboxymethyl chitosan composite finishing for durable UV resistance and antibacterial property panel. Carbohydrate Polymers, 138: 106-113.
  • 53. Wiegand, C., Abel, M., Ruth, P., Elsner, P. & Hipler, U.C. 2015. In vitro assessment of the antimicrobial activity of wound dressings: influence of the test method selected and impact of the pH. Journal of Material Science: Materials in Medicine, 26:18. https://doi.org/10.1007/s10856-014-5343-9.
  • 54. WHO 2017. Guidelines for drinking-water quality. (https://apps.who.int/iris/bitstream/handle/10665/254637/9789241549950eng.pdf;jsessionid=A112FD355F734FD1A58FA2048FE0CBA1?sequence=1), (Date accessed: 26 November 2019)
  • 55. Zhang, H., Yun, S., Song, L., Zhang, Y. & Zhao, Y. 2017. The preparation and characterization of chitin and chitosan under large-scale submerged fermentation level using shrimp by-products as substrate. International Journal of Biological Macromolecules, 96: 334-339.
  • 56. Zhao, D., Yu, S., Sun, B., Gao, S., Guo, S. & Zhao, K. 2018. Biomedical applications of chitosan and its derivative nanoparticles. Polymers, 10(4): 462. https://doi.org/10.3390/polym10040462
  • 57. Zhou, C.E. & Kan, C.W. 2014. Plasma-assisted regenerable chitosan antimicrobial finishing for cotton. Cellulose, 21: 2951-2962.