Bu çalışmanın amacı, sünmüş ekmeklerden izole edilen Bacillus amyloliquefaciens (Fukumoto) (suş FE-K1) ile elde edilen peptidazı saflaştırmak ve karakterize etmektir. Peptidazlar ham enzim çözeltisinden afinite kromatografisi ile % 25 verim ve 1,53 saflaştırma katsayısı ile saflaştırılmıştır. Kısmi olarak saflaştırılmış peptidaz (PPPaz) çözeltisinin optimum pH değeri 7,5 olarak tespit edilmiş olup, pH 7,5-8,0 aralığında peptidaz, 37°C’de 2 saat inkübasyonun ardından başlangıç aktivitesini yaklaşık % 90 oranında korumuştur. PPPaz’ın optimum sıcaklığı 60°C’dir. PPPaz’ın yaklaşık molekül ağırlığı 36 kDa olarak belirlenmiştir. PPPaz’ın O-FEN ve EDTA varlığında inaktive olması, enzimin metallopeptidaz olduğunu göstermiştir. Ayrıca 5 mM K+1 ve 5 mM Mn+2, enzimin aktivitesini sırasıyla % 4 ve % 6,15 oranında artırmıştır. Hg+2, Fe+3 ve SDS (% 0,1-1,0 w/v) varlığı enzimin inaktivasyonuna neden olurken, % 0,1-1,0 (v/v) Triton X-100, Tween 20 ve Tween 80; ve % 1-20 (v/v) ksilen, etanol, aseton ve asetonitril varlığında enzim aktivitesini büyük ölçüde korumuştur. PPPaz’ın karakterizasyonu, enzimin bazı organik çözücü ve yüzey aktif maddelerle ile uyumlu nötr bir serin metalopeptidaz olduğunu ortaya çıkarmıştır.

PARTIAL PURIFICATION AND CHARACTERIZATION OF AN EXTRACELLULAR METALLOPEPTIDASE PRODUCED BY Bacillus amyloliquefaciens FE-K1

The aim of this study was to purify and characterize the peptidase of Bacillus amyloliquefaciens (Fukumoto) (strain FE-K1) isolated from ropey bread. Peptidases were purified from crude enzyme solution by affinity chromatography with an efficiency of 25 % and a purification coefficient of 1.53. The optimum pH of partially purified peptidase (PPPase) solution was determined as 7.5 and the peptidases retained approximately 90 % of their initial activity in the pH range 7.0-8.5 following incubation at 37°C for 2 h. The optimum temperature for the PPPase was 60°C. The approximate molecular weight of the PPPase was determined as 36 kDa. Inactivation of the PPPase in the presence of O-FEN and EDTA showed them to be metallopeptidases and 5 mM of K+1 and 5 mM of Mn+2 ions increased the enzyme activity by 4 % and 6.15 %, respectively. The presence of Hg+2, Fe+3 and SDS (0.1-1.0 % w/v) caused inactivation whereas the enzyme retained most of its activity in the presence of 0.1-1.0 % (v/v) Triton X-100, Tween 20 and Tween 80 and 1-20 % (v/v) xylene, ethanol, acetone and acetonitrile. Characterization of the PPPase revealed the enzyme as a neutral serine metallopeptidase compatible with some organic solvents and surfactants.

___

  • 1. Abdel-Naby, M.A., Ahmed, S.A., Wehaidy, H.R. & El-Mahdy, S.A. 2017. Catalytic, kinetic and thermodynamic properties of stabilized Bacillus stearothermophilus alkaline protease. International Journal of Biological Macromolecules, 96: 265-271.
  • 2. Amal, K. & Abdelouahab, N. 2017. Characterization of a milk-clotting enzyme produced by Bacillus mojavensis P47M strain isolated from Algerian dairy farm soil. Research Journal of Biotechnology, 12(12): 37-45.
  • 3. Bailey, C.P. & von Holy, A. 1993. Bacillus spore contamination associated with commercial bread manufacture. Food Microbiology, 10: 287-294.
  • 4. Bankus, J.M. & Bond, J.S. 2001. Appendix II- Some commercially available proteases. Pp. 295-316. In: Reynon, B. & Bond, J.S. (eds) Proteolytic Enzymes. Oxford University Press, New York, 320 pp.
  • 5. Bradford, M.M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
  • 6. Choi, J.H., Kim, J.E., Kim, S., Yoon, J., Park, D.H., Shin, H.J., Lee, H.J. & Cho, S.S. 2017. Purification and partial characterization of a low molecular fibrinolytic serine metalloprotease C142 from the culture supernatant of Bacillus subtilis C142. International Journal of Biological Macromolecules, 104: 724-731.
  • 7. Collins, N.E., Kirschner, L.A.M. & von Holy, A. 1991. Characterization of Bacillus isolates from ropey bread, bakery equipment and raw materials. South African Journal of Science, 87: 62-66.
  • 8. Contesini, F.J., Melo, R.R. & Sato, H.H. 2018. An overview of Bacillus proteases: from production to application. Critical Reviews in Biotechnology, 38(3): 321-334.
  • 9. Cupp-Enyard, C. 2008. Sigma’s non-specific protease activity assay-casein as a substrate. Journal of Visualized Experiments, 19: 899.
  • 10. da Silva, R.R. 2017. Bacterial and fungal proteolytic enzymes: production, catalysis and potential applications. Applied Biochemistry and Biotechnology, 183: 1-19.
  • 11. D’Costa, B., Khanolkar, D. & Dubey, S.K. 2013. Partial purification and characterization of metalloprotease of halotolerant alkaliphilic bacterium Bacillus cereus from coastal sediment of Goa, India. African Journal of Biotechnology, 12(31): 4905-4914.
  • 12. Doddapaneni, K.K., Tatineni, R., Vellanki, R.N., Rachcha, S., Anabrolu, N., Narakuti, V. & Mangamoori, L.N. 2009. Purification and characterization of a solvent and detergent-stable novel protease from Bacillus cereus. Microbiological Research, 164: 383-390.
  • 13. Ellis, W.O., Obubuafo, A.K., Ofosu-Okyere, A., Marfo, E.K., Osei-Agyemang, K. & Odame-Darkwah, J.K. 1997. A survey of bread defects in Ghana. Food Control, 8: 77-82. 14. Erem, F. & Certel, M. 2018. Determination of peptidase production potential of Bacillus strains isolated from ropey bread and optimisation of some culture conditions for peptidase production. Anadolu University Journal of Science and Technology C-Life Sciences and Biotechnology, 7(2): 160-179.
  • 15. Erem, F., Certel, M. & Karakaş, B. 2009. Identification of Bacillus species isolated from ropey breads both with classical methods and API identification kits. Mediterranean Agricultural Sciences, 22(2): 201-210.
  • 16. Erem, F., Inan, M. & Certel, M. 2018. Optimisation of Bacillus amyloliquefaciens FE-K1 extracellular peptidase production by response surface methodology. Trakya University Journal of Natural Sciences, 19(2): 59-173.
  • 17. Fernández-Resa, P., Mira, E. & Quesada, R. 1994. Enhanced detection of casein zymography of matrix metalloproteinases. Analytical Biochemistry, 224: 434-435.
  • 18. Furhan, J., Salaria, N., Jabeen, M. & Qadri, J. 2019. Partial purification and characterisation of cold-active metalloprotease by Bacillus sp. AP1 from Apharwat peak, Kashmir. Pakistan Journal of Biotechnology, 16(1): 47-54.
  • 19. Ghorbel, B., Sellami-Kamoun, A. & Nasri, M. 2003. Stability studies of protease from Bacillus cereus BG1. Enzyme Microbiology and Technology, 32: 513-518.
  • 20. Gupta, M.N. 1992. Enzyme function in organic solvents. European Journal of Biochemistry, 203: 25-32.
  • 21. Gupta, R., Beg, Q.K., Khan, S. & Chauhan, B. 2002a. An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Applied Microbiology and Biotechnology, 60: 381-395.
  • 22. Gupta, R., Beg, Q.K. & Lorenz, P. 2002b. Bacterial alkaline proteases: molecular approaches and industrial applications. Applied Microbiology and Biotechnology, 59: 15-32.
  • 23. Hammami, A., Bayoudh, A., Hadrich, B., Abdelhedi, O., Jridi, M. & Nasri, M. 2020. Response-surface methodology for the production and the purification of a new H2O2-tolerant alkaline protease from Bacillus invictae AH1 strain. Biotechnology Progress, e2965, doi: https://doi.org/10.1002/btpr.2965.
  • 24. Iglesias, M.S., Sequeiros, C., García, S. & Olivera, N.L. 2017. Newly isolated Bacillus sp. G51 from Patagonian wool produces an enzyme combination suitable for felt-resist treatments of organic wool. Bioprocess and Biosystem Engineering, 40: 833-842.
  • 25. Jisha, V.N., Smitha, R.B., Pradeep, S., Sreedevi, S., Unni, K.N., Sajith, S., Priji, P., Josh, M.S. & Benjamin, S. 2013. Versatility of microbial proteases. Advances in Enzyme Research, 1(3): 39-51.
  • 26. Kirschner, L.A.M. & von Holy, A. 1989. Rope spoilage of bread. South African Journal of Science, 85: 425-427.
  • 27. Kumar, C.G. & Takagi, H. 1999. Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnology Advances, 17: 561-594.
  • 28. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685.
  • 29. Lauer, I., Bonnewitz, B., Meunier, A. & Beverini, M. 2000. New approach for separating Bacillus subtilis metalloprotease and α-amylase by affinity chromatography and for purifying neutral protease by hydrophobic chromatography. Journal of Chromatography B, 737: 277-284.
  • 30. Leber, T.M. & Balkwill, F.R. 1997. Zymography: a single-step staining method for quantitation of proteolytic activity on substrate gels. Analytical Biochemistry, 249: 24-28. 31. Lee, H., Suh, D.B., Hwang, J.H. & Suh, H.J. 2002. Characterization of a keratinolytic metalloprotease from Bacillus sp. Applied Biochemistry and Biotechnology, 97: 123-133.
  • 32. Lee, E.S., Lee, H.W., Lee, D.H. & Kim, H. 2016. Characterization of a metalloprotease from an isolate Bacillus thuringiensis 29-126 in animal feces collected from a zoological garden in Japan. Journal of Applied Biological Chemistry, 59(4): 373-377.
  • 33. Manni, L., Jellouli, K., Agrebi, R., Bayoudh, A. & Nasri, M. 2008. Biochemical and molecular characterization of a novel calcium-dependent metalloprotease from Bacillus cereus SV1. Process Biochemistry, 43: 522-530.
  • 34. Manni, L.-M., Jellouli, K., Ghorbel-Bellaaj, O., Agrebi, R., Sellami-Kamoun, A. & Nasri, M. 2010. An oxidant- and solvent-stable protease produced by Bacillus cereus SV1: application in the deproteinization of shrimp wastes and as a laundry detergent additive. Applied Biochemistry and Biotechnology, 160: 2308-2321.
  • 35. Mardina, V. & Yusof, F. 2016. Purification and characterization of surfactant-stable protease from Bacillus licheniformis: A potential additive for laundry detergent. International Journal of Advanced Biotechnology and Research, 7(2): 634-643.
  • 36. Maruthiah, T., Somanath, B., Immanuel, G. & Palavesam, A. 2017. Investigation on production and purification of haloalkalophilic organic solvent tolerant protease from marine shell waste and its bioconversion to chitin by aquatic Bacillus sp. APCMST-CS4. Waste and Biomass Valorization, 8: 811-827.
  • 37. Matta, H. & Punj, V. 1998. Isolation and partial characterization of a thermostable extracellular protease of Bacillus polymyxa B-17. International Journal of Food Microbiology, 42: 139-145.
  • 38. Mothe, T. & Sultanpuram, V.R. 2016. Production, purification and characterization of a thermotolerant alkaline serine protease from a novel species Bacillus caseinilyticus. 3 Biotech, 6(53): 1-10.
  • 39. Pepe, O., Blaiotta, G., Moschetti, G., Greco, T. & Villani, F. 2003. Rope-producing strains of Bacillus spp. from wheat bread and strategy for their control by lactic acid bacteria. Applied and Environmental Microbiology, 69(49): 2321-2329.
  • 40. Qureshi, A.S., Simair, A.A., Ali, C.H., Khushk, I., Khokhar, J.A., Ahmad, A., Danish, M. & Lu, C. 2018. Production, purification and partial characterization of organo-solvent tolerant protease from newly isolated Bacillus sp. BBXS-2. Fermentation Technology, 7(1): 151-159.
  • 41. Rahman, R.N.Z.R.A., Mahamad, S., Salleh, A.B. & Basri, M. 2007. A new organic solvent tolerant protease from Bacillus pumilus 115b. Journal of Industrial Microbiology and Biotechnology, 34: 509-517.
  • 42. Rao, M.B., Tanksale. A.M., Ghatge, M.S. & Deshpande, V.V. 1998. Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62(3): 597-635.
  • 43. Rawlings, N.D., Morton, F.R. & Barrett, A.J. 2007. An introduction to peptidases and the Merops database. Pp. 161-179. In: Polaina, J. & MacCabe, A. (eds) Industrial enzymes-structure, function and applications. Springer, The Netherlands, xii + 641 pp.
  • 44. Razzaq, A., Shamsi, S., Ali, A., Ali, Q., Sajjad, M., Malik, A. &Ashraf, M. 2019. Microbial Proteases Applications. Frontiers in Bioengineering and Biotechnology, 7: 110-129.
  • 45. Rehman, R., Ahmed, M., Siddique, A., Hasan, F., Hameed, A. & Jamal, A. 2017. Catalytic role of thermostable metalloproteases from Bacillus subtilis KT004404 as dehairing and destaining agent. Applied Biochemistry and Biotechnology, 181(1): 434-450.
  • 46. Rosenkvist, H. & Hansen, A. 1995. Contamination profiles and characterization of Bacillus species in wheat bread and raw materials for bread production. International Journal of Food Microbiology, 26: 353-363.
  • 47. Sabirova, A.R., Rudakova, N.L., Balaban, N.P., Ilyinskaya, O.P., Demidyuk, I.V., Kostrov, S.V., Rudenskaya, G.N. & Sharipova, M.R. 2010. A novel secreted metzincin metalloproteinase from Bacillus intermedius. FEBS Letters, 584: 4419-4425.
  • 48. Salleh, A.B., Razak, C.N.A., Rahman, R.N.Z.R.A. & Basri, M. 2006. Protease: introduction. Pp. 23-39. In: Salleh, A.B., Razak, C.N.A. & Basri, M. (eds) New lipases and proteases. Nova Science Publishers, New York, 159 pp.
  • 49. Salwan, R. & Sharma, V. 2019. Trends in extracellular serine proteases of bacteria as detergent bioadditive: alternate and environmental friendly tool for detergent industry. Archives of Microbiology, 201: 863-877.
  • 50. Sandhya, C., Nampoothiri, K.M. & Pandey, A. 2005. Microbial proteases, Pp. 165-179. In: Barredo, J.L. (ed) Microbial enzymes and biotransformations, Humana Press, Totowa, xi+319 pp.
  • 51. Schallmey, M., Singh, A. & Ward, O.P. 2004. Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology, 50: 1-17.
  • 52. Sharmila, G.R., Halami, P.M. & Venkateswaran, G. 2018. Identification and characterization of a calcium dependent bacillopeptidase from Bacillus subtilis CFR5 with novel kunitz trypsin inhibitor degradation activity. Food Research International, 103: 263-272.
  • 53. Si, J.B., Jang, E.J., Charalampopoulos, D. & Wee, Y.J. 2018. Purification and characterization of microbial protease produced extracellularly from Bacillus subtilis FBL-1. Biotechnology and Bioprocess Engineering, 23(2): 176-182.
  • 54. Sousa, F., Jus, S., Erbel, A., Kokol, V., Cavco-Paulo, A. & Gubitz, G.M. 2007. A novel metalloprotease from Bacillus cereus for protein fibre processing. Enzyme and Microbial Technology, 40: 1772-1781.
  • 55. Thapa, S., Li, H., OHair, J., Bhatti, S., Chen, F.C., Nasr, K.A., Johnson, T. & Zhou, S. 2019. Biochemical characteristics of microbial enzymes and their significance from industrial perspectives. Molecular Biotechnology, 61: 579-601.
  • 56. Thompson, J.M., Dodd, C.E.R. & Waites, W.M. 1993. Spoilage of bread by Bacillus. International Biodeterioration and Biodegradation, 32: 55-66.
  • 57. Thompson, J.M., Waites, W.M. & Dodd, C.E.R. 1998. Detection of rope spoilage in bread caused by Bacillus species. Journal of Applied Microbiology, 85: 481-486.
  • 58. Tian, J., Long, X., Tian, Y. & Shi, B. 2019. Eco-friendly enzymatic dehairing of goatskins utilizing a metalloprotease high-effectively expressed by Bacillus subtilis SCK6. Journal of Cleaner Production, 212: 647-654.
  • 59. Volavsek, P.J.A., Kirschner, L.A.M. & von Holy, A. 1992. Accelerated methods to predict the rope-inducing potential of bread raw materials. South African Journal of Science, 88: 99-102.
  • 60. Voysey, P.A. 1989. Rope: a problem for bakers. Journal of Applied Bacteriology, 67: 25-26.
  • 61. Waites, M.J., Morgan, N.L., Rockey, J.S., and Higton, G. 2001. Industrial microbiology: an introduction. Blackwell, London, 288 pp.
  • 62. Wang, S.L., Kao, T.Y., Wang, C.L., Yen, Y.H., Chern, M.K. & Chen, Y.H. 2006. A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in the deproteinization of squid pen for β-chitin preparation. Enzyme Microbiology and Technology, 39: 724-731.
  • 63. Wu, J.W. & Chen, X.L. 2011. Extracellular metalloproteases from bacteria. Applied Microbiology and Biotechnology, 92: 253-262.