TEKSTİL TERBİYESİNDE NANO BOYUTTA KİTOSANIN YEŞİL UYGULAMASI

Yünlü kumaşlar hidrofilite, boyanabilirlik, antimikrobiyallik ve çekmezlik özelliklerinin geliştirilmesi için farklı yüzey modifikasyonu yöntemlerine tabi tutulmaktadır. Klasik işlemler ve tekstil kimyasalları yerine özellikle çevre dostu işlemler ve biyopolimerlerin aplikasyonu gittikçe önem kazanmaktadır. Bu çalışmada nanokitosan partikülleri sentezlenmiş yünlü kumaşlara aplikasyon yapılmış ve normak kitosan ile farklı özellikler açısından karşılaştırılmıştır. Ayrıca, gümüş yüklü nanokitosan partikülleri de sentezlenmiş ve farklı yöntemlerle uygulanarak antibakteriyel q aktiviteleri açısından incelenmiştir. Hidrofilite, antimikrobiyellik, boyama, hava geçirgenliği, yüzey morfolojisi ve mukavemet üzerine etkileri incelenmiştir. Kitosan/nanokitosan aplikasyonu öncesi etkileri arttırmak için enzim ve atmosferik plazma işlemlerinin tek başına ve kombinasyon halinde uygulanmıştır. Kitosan ve nanokitosan üzerine enzim ve plazma uygulamalarının incelenen tim özelliklere önemli katkılar sağladığı gösterilmiştir. Yüzey incelemelerinden, özellikle kombine işlemlerin yünlü kumaşlarda daha pürüzsüz yüzey oluşturduğu görülmüştür. Böylece, ekolojik yöntemlerle geliştirilmiş hidrofilite ve boyanabilirlik özellikleri elde edilebilmiştir. Enzim, plazma ve nanokitosan işlemlerinin sinerjetik etkisi ile boyama işlemi sonucunda, işlemsiz kumaşa göregöre 2.5 kat daha fazla K/S değerlerine ulaşılmıştır. Buna ilaveten, tüm işlemler kumaşların temel özeliklerine zarar verici etki meydana getirmemiştir.

A GREEN APPLICATION OF NANO SIZED CHITOSAN IN TEXTILE FINISHING

Wool fabrics are subjected to different surface modification methods in order to improve their hydrophilicity, dyeability, antimicrobial, shrinkproofing properties. Especially environmental friendly methods and application of biopolymers are gaining importance instead of conventional processes and textile chemicals. In this study, nanochitosan particles were synthesized, applied on wool fabrics and compared with bulk chitosan in terms of various properties. Ag-loaded chitosan nanoparticles was also synthesized and examined in terms of its antibacterial activity by different application methods. It has more than 95 % antibacterial effect against gram positive and negative bacteria. The influences on hydrophilicity, antibacterial activity, dyeing, air permeability, surface morphology and tensile strength were studied. Enzyme and atmospheric plasma treatments were used both alone and combined treatments before application of chitosan/nanochitosan to increase their effects. It was noticed that enzyme and plasma treatments showed significant contributions on chitosan and nanochitosan in all investigated properties. From surface observations, it was seen that especially combined treatments caused a smoother surface on wool fabrics. Therefore improved hydrophilicity and dyeability properties could be obtained by ecological methods. As a result of dyeing process, the synergetic effect of enzyme, plasma and nanochitosan treatments led to 2.5 times higher K/S values than that of untreated fabric. Moreover, all treatments had no detrimental effects on bulk properties of fabrics.

___

  • 1. Vílchez S., Manich A.M., Jovancic P., Erra P. , 2008, “Chitosan Contribution On Wool Treatments With Enzyme, Carbohydrate Polymers, 71(4), 515–523.
  • 2. Kotlińska A., Lipp-Symonowicz B, 2011, “Research on the Enzymatic Treatment of Wool Fibres and Changes in Selected Properties of Wool”, Fibres & Textiles in Eastern Europe, 19(3), 88-93.
  • 3. Pakdel E., Daoud W.A., Sun L. Wang X., 2015, “Photostability of wool fabrics coated with pure and modified TiO2 colloids”, Journal of Colloid and Interface Science, 440, 299–309
  • 4. Demir A., Ozdogan E., Ozdil N., 2011, “Ecological Materials and Methods in the Textile Industry: Atmospheric-Plasma Treatments of Naturally Colored Cotton”, Journal of Applied Polymer Science, 119, 1410–1416 .
  • 5. Biniaś, D. , Włochowicz, A. , Biniaś, W., 2004, “Selected Properties of Wool Treated by Low-Temperature Plasma”, Fibres and Textiles in Eastern Europe, 12(2), 58-62.
  • 6. Hegemann D., Hossain M.M.,. Balazs D. J., 2007, “Nanostructured plasma coatings to obtain multifunctional textile surfaces”, Progress in Organic Coatings, 58 (2), 237–240.
  • 7. Zhang H., Wang L.L., 2010, “Study on the properties of woolen fabric treated with chitosan/TiO2 sol”, The Journal of The Textile Institute, 101(9), 842–848.
  • 8. Onar, N., Sarıışık, M., 2004, “Application of enzymes and chitosan biopolymer to the antifelting finishing process”, Journal of Applied Polymer Science, 93(6),2903-2908.
  • 9. Lewis D. M., 1992, “The structure of wool”, Wool Dyeing, Edited by D M Lewis, Society of Dyers and Colourists, Bradford (UK), 2-3.
  • 10. Huang K., Sheu Y., Chao I., 2009, “Preparation and Properties of Nanochitosan”, Polymer-Plastics Technology and Engineering, 48 (2), 1239-1243.
  • 11. Yang H., Wang W., Huang K., 2010, “Preparation and application of nanochitosan to finishing treatment with anti-microbial and anti-shrinking properties”, Carbohydrate Polymers, 79(1), 176-179
  • 12. Ali, S.W., Rajendran, S., Joshi, M., 2011. ”Synthesis and Characterization of Chitosan and Silver Loaded Chitosan Nanoparticles for Bioactive Polyester”,Carbohydrate Polymers, 83, 438–446.
  • 13. 13.Gouda, M., Hebeish, A., 2010. ”Preparation and Evaluation of CuO/Chitosan Nanocomposite for Antibacterial Finishing Cotton Fabric”, Journal of Industrial Textiles, 39, 203-214.
  • 14. Hebeish, A., Sharaf, S., Farouk, A., 2013, “Utilization of Chitosan Nanoparticles as a Green Finish in Multifunctionalization of Cotton Textile”, International Journal of Biological Macromolecules, 60, 10– 17.
  • 15. Kaliyamoorthi, K. ve Thangavelu, R. 2015, “Union Dyeing of Cotton/Nylon Blended Fabric by Plasma-Nano Chitosan Treatment’’, Fashion and Textiles, 2, 1-10.
  • 16. Gökçe, Y., Cengiz, B., Yildiz, N., Calimli, A. ve Aktas, Z. 2014.”Ultrasonication of Chitosan Nanoparticle Suspension: Influence on Particle Size”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 462, 75–81.
  • 17. Koçum, C., Ayhan, H., “Design and Construction of Uniform, Glow Discharge Plasma System Operating Under Atmospheric Condition”, Rev. Sci. Instrum. 78, 063501, 1–5 (2007
  • 18. Zheng, L. Y., Zhu, J. F., 2003, “Study on antimicrobial activity of chitosan with different molecular weights”, Carbohydrate Polymers, 54, 527–530
  • 19. Onar, N., Sarıışık, M., 2005, “Use of Enzymes and Chitosan Biopolymer in Wool Dyeing”, FIBRES & TEXTILES in Eastern Europe, 1(49), 54-59.
  • 20. Karanikas E. K.,. Kosolia Ch. Th, Zarkogianni M. Ch., 2013, “Effect of enzymatic treatment on the dyeing properties of protein wool fibers”, Fibers and Polymers, 14 (2), 223-229.
  • 21. Khaled F. El-tahlawya, Samuel M. Hudson, 2005, “The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan”, Carbohydrate Polymers, 60(4), 421–430.
  • 22. Jocic D., Vílchez S., Topalovic T., 2005, “Chitosan/acid dye interactions in wool dyeing system”, 60 (1), 51–59.
  • 23. Demir A., Karahan A., Özdoğan E., Öktem T., Seventekin N., 2008. “The Synergetic Effects of Alternative Methods in Wool Finishing”, Fibres&Textiles in Eastern Europe,16, 89-94.
  • 24. Karahan H A., Özdoğan E. Demir A., 2009, “Effects of atmospheric pressure plasma treatments on some physical properties of wool fibers”, Textile Research Journal, 79(14), 1260–1265
  • 25. Karahan H. A., Özdoğan E., Demir A., 2009, “Effects of Atmospheric Pressure Plasma Treatments on Certain Properties of Cotton Fabrics”, Fibres & Textiles in Eastern Europe, 17(2), 19-22.
  • 26. Atmaca M., Dal V., Yılmaz A., 2015, “Investigation of the effects of fabric parameters on air permeability of woolen fabrics”, Textile Research Journal , 85(20), 2099–2107.
  • 27. Shin Y., Yoo D., Min, K., 1999, “Antimicrobial Finishing of Polypropylene Nonwoven Fabric by Treatment with Chitosan Oligomer”, Journal of Applied Polymer Science, 74, 2911–2916.
  • 28. Şahan, G. 2013. ’’Farklı Formlardaki Kitosan Biyopolimerinin Yün Liflerine Uygulanma Olanaklarının Araştırılması”, Yüksek Lisans Tezi, Fen Bilimleri Enstitüsü, Ege Üniversitesi, İzmir
  • 29. Helander I.M., Nurmiaho-Lassila E.-L., Ahvenainen R., 2001, “Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria”, International Journal of Food Microbiology, 71, 235–244
  • 30. Chattopadhyay, D. ve Inamdar, M.S., 2013, ”Improvement in Properties of Cotton Fabric Through Synthesized Nano-Chitosan Application”, Indian Journal of Fibre&Textile Journal, 38, 14-21.
  • 31. Acar Cakir, B., Budama, L., Topel, O. ve Hoda, N., 2012. "Synthesis of Zno Nanoparticles Using PS-B-PAA Reverse Micelle Cores for UV Protective, Self- Cleaning and Antibacterial Textile Applications", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 414, 132-139