TEKSTİL MALZEMELERİNİN YÜZEY MODİFİKASYONLARINDA KULLANILAN BAZI YÖNTEMLER

Modifikasyon; herhangi bir materyalde meydana gelen sınırlı değişiklik olarak tanımlanmaktadır. Yüzey modifikasyonu, materyallerin temel özelliklerinin değiştirilmeden, yüzeylerinde fiziksel ve/veya kimyasal değişimler meydana gelmesini sağlamaktadır. Kimyasal, fizikokimyasal ve biyokimyasal olarak sınıflandırılan bu modifikasyon yöntemleri sayesinde, tekstil materyalinin fonksiyonu arttırılabilmektedir. Tekstil materyallerinde kimyasal modifikasyon, herhangi bir kimyasal maddenin aplikasyonu sonucunda meydana gelen kimyasal reaksiyon ile kimyasal maddelerin tekstil materyallerinin yüzeyine bağlanması şeklinde meydana gelmektedir. Tekstil mamulünün kimyasal maddelere uzun süre maruz kalması sonucunda, rengi bozulmakta, lifler zarar görmekte ve mekanik özellikleri bozulabilmektedir. Kimyasal yöntemlerin dezavantajlarının fazla olması, son yıllarda fizikokimyasal yöntemlerin ticari anlamda önemini artırmış ve böylece mamul özelliklerinin modifikasyonunda klasik yaş işlemlerin yerini alması için çalışmalar yoğunlaşmıştır. Fizikokimyasal yöntemlere örnek olarak; korona boşalması, ısıl işlemler, plazmalar, UV ve -radyasyonu, elektron veya iyon bombardımanı, ozon gibi işlemler verilmektedir. Kimyasal yöntemlerin dezavantajlarını ortadan kaldırmak amacıyla geliştirilen alternatif yöntemlerden biriside tekstil terbiyesinde enzim kullanımıdır. Tekstil endüstrisine ilk olarak haşıl sökme işleminde amilaz kullanımı ile giren enzimler günümüzde hem doğal hem de sentetik liflerin ön terbiye, boyama ve bitim işlemleri olmak üzere birçok alanda kullanılmaktadır

SOME METHODS USED FOR THE SURFACE MODIFICATION OF TEXTILES

Modification is defined as a limited change in any material. Surface modification provides some physical and/ or chemical changes on the surface of the materials without effecting their bulk properties. With these modification methods which are classified as chemical, physicochemical and biochemical some properties can be enchanged or given single or multi-functions to the textile materials for various applications. Chemical modification of textiles is carried out with application and reaction of any kind of chemical agent to the material. If the textile material is exposured to the chemicals long time, color, mechanic and chemical properties of the material can be changed. Because of disadvantages of chemical modifications, researhers tend to improve and accessibility of physicochemical modifications. Corona discharge, heat treatments, plasmas, UV and - radiations electron or ion bombardement, ozon can be given as an example for physicochemical. Another alternative method is biochemical modification with enzymes. Enzymes are used in desizing (amylase) for the first time in textile industry and now they can be used in many applications from pretreatment to finishing of both synthetic and natural fibres

___

  • 1) Seventekin N., Aşı polimerizasyonu ile Tekstil Liflerinin Yüzeysel Özelliklerinin Değiştirilmesi, Doğa Bilim Dergisi Cilt:7, 1983.
  • 2) Matthews S.R., Plasma Aided Finishing of Textile Materials Fiber And Polymer Science North Carolina State University, Doktora Tezi, 2005
  • 3) Garbassi F, Mora M., Occhiello E., Polymer Surfaces: From Physics to Technology, John Wiley and Sons Ltd., Chichester, UK (1998).
  • 4) http://www.tft.csiro.au/research/pdf/ UV%20Technology%20- %20Application%20in%20the%20Textil e%20Industry.pdf
  • 5) Chan C. Polymer Surface Modification and Characterization, Hanser/Gardner Publications, Inc., New York (1994). 6) http://en.wikipedia.org/wiki/Corona_disc harge
  • 7) Verschuren J., Kıekens P. Plasma Technology For Textıles: Where Are We? http://www.kotonline.com/english_page s/ana_basliklar/kiekens.asp
  • 8) Contınuous And Semı-Contınuous Treatment Of Textıle Materıals Integratıng Corona Dıscharge Patent Number: WO 2005/115063 A1
  • 9) Chan C., Polymer Surface Modification and Characterization,Hanser/Gardner Publications, Inc., New York (1994).
  • 10) http://www.combust.com.au/plastic/ polyol.htm
  • 11) http://www.shermantreaters.co.uk/ acrobat/probinder10.pdf
  • 12) Pochner K., Neff W., Lebert R., “Atmospheric pressure gas discharges for surface treatment,” Surface and Coatings Technology, 74-75, 394 (1995).
  • 13) AKAN T., Maddenin 4. Hali Plazma ve Temel Özellikleri Elektronik Cağdas Fizik Dergisi, 4. Sayı.
  • 14) http://en.wikipedia.org/wiki/Ultraviolet
  • 15) http://www.srrb.noaa.gov/UV/
  • 16) Feast W.J., Munro H.S., Ed., “New generation atmospheric pressure plasma technology for industrial on-line processing,” Polymer Surfaces and Interfaces, John Wiley and Sons Ltd., Chichester, UK (1987).
  • 17) Walter H. Waddell, Larry R. Evans, James G. Gilick, and Derek Shuttleworth,“Polymer Surface Modification,” Rubber Chem. and Technol., 65, 687 (1992).
  • 18) Jang J., Jeong Y., Nano roughening of PET and PTT fabrics via continuous UV/O3 irradiation, Dyes and Pigments 69 (2006) 137e143.
  • 19) Rich M.J., Enhancement of Tensile Strength and Surface Oxidation of Carbon Fibers Using Ultraviolet Light Surface Treatment, Composite Materials & Structures Center, Michigan State University.
  • 20) P.F.A. Buijsen, Electron Beam Induced Cationic Polymerization with Omium Salts, Delft University Press, The Netherlands, 1996.
  • 21) Stannett V,. Walsh W.K, Bittencourt E., Liepins R., Surles J.R., “Chemical modification of fibers and fabrics with high-energy radiation,” J. App. Polym.Sci.: App. Polym. Symp., 31, 201 (1977).
  • 22) Roger L. Clough and Shalaby W. Shalaby, Eds., Irradiation of Polymers: Fundamentals and Technological Applications, American Chemical Society, Washington, D.C., 1996.
  • 23) E. Anelise, K. Miyazaki, K. Hisada, T. Hori, Photo-Catalyst Activity of Hydroxy Apatite -Titania Coated onto Fabrics Grafted by Electron Beam Irradiation, Radiation Physics and Chemistry, 2004.
  • 24) http://en.wikipedia.org/wiki/Gamma_ray
  • 25) Jagur-Grodzinsk J., Heterogenous Modification of Polymers: Matrix and Surface Reactions, John Wiley and Sons Ltd., Chichester, UK (1997).
  • 26) Roger L. Clough and Shalaby W. Shalaby, Eds., Irradiation of Polymers: Fundamentals and Technological Applications, American Chemical Society, Washington, D.C., 1996.
  • 27) Park S., Koh S., Kook D. P. “Effects of surface modification by Ar+ irradiation on wettability of surfaces of PET films,” Polym. Eng. and Sci., 38(7), 1185 (1998)124.
  • 28)Venkatesan T., Brown W.L,. Murray C.A, Marcantonio K.J.,. Wilkens B.J, “Dynamics of ion beam modification of polymer films,”Polym. Eng. and Sci., 23(17), 931 (1983).
  • 29) Ion Beam Processing (IBP) Technologies Sector Study FINAL REPORT Prepared for the North American Technology and Industrial Base Organization (NATIBO) Prepared by BDM Federal, Inc. June 1996.
  • 30) http://silver.neep.wisc.edu/psii/
  • 31) Ion Beam Processing (IBP) Technologies Sector Study FINAL REPORT Prepared for the North American Technology and Industrial Base Organization (NATIBO) Prepared by BDM Federal, Inc. June 1996.
  • 32) Oktem T, Tarakçıoğlu I., Öztarhan A., Özdoğan E., Tek Z., Karaaslan A., Namlıgöz S., Investigating the Applicability of Metal Ion Implantation Technique (MEVVA) to the Textile Surfaces, 4th World Textile Conference, Autex , France, 2005.
  • 33) http://www.kimyaokulu.com/merak%20 ediyorsaniz/html/ozon.htm
  • 34) http://www.meteor.gov.tr/2005/sorular/ ozon20/ozon20soru.htm
  • 35) http://tr.wikipedia.org/wiki/Ozon
  • 36) http://en.wikipedia.org/wiki/Ozone
  • 37) Prabaharan M.; Chandran Nayar R.; Selva Kumar N.; Venkata Rao J. A study on the advanced oxidation of a cotton fabric by ozon, Coloration Technology, 2000, vol. 116, no. 3, pp. 83-86(4)
  • 38) Thorsen W. J., Sharp, D.L. Randall, V.G.Vapor-Phase Ozone Treatment of Wool Garments, Textile Research Journal, Apr 1979, v. 49 (4),p. 190-197)
  • 39) Wakida, T., Tokuyama, T., Lee, Muncheul J., Jeong H. Ozone Gas Treatment of Wool and Silk Fabrics Textile Research Journal, Jul 2004
  • 40) http://www.focusdergisi.com.tr/ bilim/00152/
  • 41) Atağ S., "Laser Nedir", Tübitak Bilim Teknik Dergisi Tem., sf., 19842
  • 42) http://tr.wikipedia.org/wiki/Lazer
  • 43) Zeng, J. and Netravali, A. N., KrF, Excimer Laser Surface Modification of Ultra High Molecular Weight Polyethylene Fibers for Improved Adhesion to Epoxy Resin, pp. 159-182, in Polymer Surface Modification: Relevance to Adhesion: Volume3, K. L. Mittal Ed., VSP, Utrecht, The Netherlands, 2004
  • 44) Yip J., Chan K., Sin K. M., Lau K. S., Comprehensive Study of Polymer Fiber Surface Modifications Part 1: Highfluence UV-excimer-laser-induced Structures, Polymer International 53: 627-633 (2004).
  • 45) G. Buschle-Diller, R. Radhakrishnaiah, H. Freeman, S.H. Zeronian Environmentally Benign Preparatory Processes – Introducing a Closed-Loop System Annual Report August 2001
  • 46) Jan Marek, R. Hanus , L. MartinkovaINOTEX-COST Action 847 Textile Quality and Biotechnology NEWSLETTER OF WG3 Bioprocessing of Cotton and Man-made Fibres
  • 47) H.B.M. Lenting, Netherlands Organisation for Applied Scientific Research (TNO) COST Action 847 Textile Quality and Biotechnology NEWSLETTER OF WG3 Bioprocessing of Cotton and Man-made Fibres
  • 48) WO9824965 nolu patenet-Novo Nordisk
  • 49) Carlos B., Georg M. Gübitz, CavacoPaulo A., Laccases to Improve the Whiteness in a Conventional Bleaching of Cotton, Macromol. Mater. Eng. 2003, 288 No. 10, 807-810.
  • 50) Gisela Buschle-Diller Xiang Dong Yang, Ry.,Enzymatic Bleaching Of Cotton Fabric with Glocose Oxidase Textile Research Journal 71(5), 388- 394 2001.
  • 51) Korkmaz A., Öktem T., Enzimatik İşlem Görmüş Yünlü Mamullerin Çeşitli Özelliklerinin Araştırılması, Tekstil Teknolojisi ve Kimyasındaki Son Gelişmeler Sempozyumu IX, 30 Nisan-2 Mayıs 2003, BURSA
  • 52) SILVA C., CAVACO-PAULO A., Monitoring Biotransformations in Polyamide Fibres, Biocatalysis and Biotransformation, 2004 VOL. 22 (5/6). pp. 357/360.
  • 53) New Model Substrates for Enzymes Hydrolysing Polyethyleneterephthalate and Polyamide Fibres, Heumann S., Eberl A., Pobeheim H., Liebminger S., Fischer-Colbrie G., Almansa E., Cavaco-Paulo A., Gübitz G. M., J. Biochem. Biophys. Methods (2006) Article in Press
  • 54) Alisch M, Feuerhack A, Mueller H, Mensak B, Andreaus J, Zimmermann W. Biocatalytic modification of polyethylene terephthalate fibres by esterases from actinomycete isolates. Biocatal Biotransform 2004;22:347–51.
  • 55) Gübitz G. M., Cavaco-Paulo A., New Substrates for Reliable Enzymes: Enzymatic Modification of Polymers, Current Opinion in Biotechnology 2003, 14:577–582).