POLİANİLİN VE AMİN FONKSİYONEL GRUPLU KARBON NANOTÜPLERİN KOMPOZİT NANOLİF ÖZELLİKLERİNE ETKİSİ

Polianilin (PANI) gibi iletken polimerlerin ve karbon nanotüp (CNT) gibi iletken nano partiküllerin kompozit ürün üzerinde oldukça önemli etkileri mevcuttur. Şu ana kadar gerçekleştirilen nano polimer kompozit çalışmalarda ya sadece PANI ya da sadece CNT kullanılmıştır. Hem PANI hem de CNT’nin bir arada kullanıldığı, kısaca her iki malzemenin sinerjik etkisini kompozit ürün üzerinde analiz etme ile ilgili henüz bir çalışma literatürde mevcut değildir. Böylece, bu çalışmada ilk kez, PANI ve CNT beraber polimer matriks (poliakrilonitril, PAN) içerisinde dağıtılarak kompozit nanolif ağı üretilmiştir. PANI’in, CNT’e kıyasla nanolif çapını daha yüksek oranda arttırdığı görülmüştür. Katkı malzeme miktarı ve tipi arttıkça, polimer matriks içinde topaklanma riski daha çok artmaktadır. Bununla birlikte, kompozit yapı içinde %1 CNT, %3 PANI ihtiva eden ürün, %100 PAN ve diğer kompozit numunelere kıyasla daha yüksek kopma mukavemetine sahip olmuştur. Normalde yalıtkan bir malzeme olan PAN, bu çalışmada kullanılan katkı malzemeleri ile antisatik malzeme özelliğini kazanmıştır. Bununla birlikte katkı malzeme tipinin değişmesi ve oranlarının artması iletkenliği çok fazla değiştirmemiştir. PANI ve CNT mevcudiyeti ile PAN polimerinin kristalinitesi artmıştır. PANI sebebi ile siklizasyon sıcaklığı artarken, entalpi düşmüş, CNT sebebi ile hem siklizasyon sıcaklığı hem de entalpi yükselmiştir

THE EFFECT OF POLYANILINE AND AMINE FUNCTIONALIZED CARBON NANOTUBES ON THE PROPERTIES OF COMPOSITE NANOFIBER WEB

Conductive polymers such as PANI and conductive nanoparticles such as CNTs have very important effects on the polymer matrix. Although there are many studies carried out for just only PANI filler or carried out for just only CNT filler, there are no studies performed to see the synergistic effects of both PANI and functionalized CNTs on polymer matrix. Thus in this study, for the first time, PANI together with CNTs has been used as a filler for polymer matrix, polyacrylonitrile. It has been seen that the diameters of nanofibers increase due to presence of PANI and CNTs and the effect of PANI on the increase in diameter is higher than that of CNTs. An increase in filler content results in an increase in agglomeration risk which degrades the properties of composite nanofiber web. However, higher breaking strength is obtained for the composite nanofiber with 1% CNT and 3% PANI. Insulator PAN became an antistatic material (static dissipative material) by the presence of CNT and PANI. However, an increase in filler content did not increase the electrical conductivity. This may be due to the agglomeration and void formation around the filler which destroy the network leading to the decrease in conductivity. Presence of PANI and CNT increases the crystallinity of PAN. The crystallinity of composite nanofiber with both of CNT and PANI is higher than that of pure PAN nanofiber, nanofiber with PAN, CNT and nanofiber with PAN, PANI. PANI increases the cyclization temperature and decreases the enthalpy; however CNT has a tendency to increase both the cyclization temperature and the enthalpy. When both of them (CNT and PANI) are present in high amount (3%), then both cyclization temperature and enthalpy decrease

___

  • 1. Lee, S.J., Oh, H.J., et al., 2003, “Fabrication and physical properties of conductive polyacrylonitrile-polyaniline derivative fibers”, Synthetic Metals, 135–136, 399–400.
  • 2. Zhai, G., Fan, Q., Tang, Y., et al., 2010, “Conductive composite films composed of polyaniline thin layers on microporous polyacrylonitrile surfaces”, Thin Solid Films, 519,169–173.
  • 3. Jaymand, M., 2013, “Recent progress in chemical modification of polyaniline”, Progress in Polymer Science, 38, 1287– 1306.
  • 4. Ciric–Marjanovic, G.,2013, “Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications”, Synthetic Metals, 177,1– 47.
  • 5. MacDiarmid, A.G., Epstein A.J., 1992, “Polyaniline: Synthesis, Chemistry and Processing”, New Aspects of Organic Chemistry II, 271.
  • 6. Oueıny, C., Berlioz, S., Berrin, F., 2014, “Carbon nanotubes-Polyaniline Composites”, Progress ın Polymer Science, 39, 707–748.
  • 7. 7 .Pan, W., Yang, S.L., Li, G., Jiang, J.M., 2005, “Electrical and structural analysis of conductive polyaniline/polyacrylonitrile composites”, European Polymer Journal, 41, 2127–2133.
  • 8. Sreekumar, T. V., Liu, T., et al., 2004, “Polyacrylonitrile-Single Wall Carbon Nanotube Composite Fibers”, Advanced Material, 16.
  • 9. P. Heikkilä, A. Harlin, 2009, “Electrospinning of polyacrylonitrile (PAN) solution: Effect of conductive additive and filler on the process”, eXPRESS Polymer Letters, Vol.3, No.7, 437–445.
  • 10. Chen, H., Wang, C., Chen, C., 2010, “Fabrication and Structural Characterization of Polyacrylonitrile and Carbon Nanofibers Containing Plasma-Modified Carbon Nanotubes by Electrospinning”, J. Phys. Chem. C, 114, 13532–13539.
  • 11. M. Yousefzadeh, M. Amani-Tehran, M. Latifi; S. Ramakrishan, 2010,“Morphology and Mechanical Properties of Polyacrylonitrile/Multi-Walled Carbon Nanotube (PAN/MWNTs) Nanocomposite Electrospun Nanofibers”, Transaction F: Nanotechnology, 17, 1, 60-65.
  • 12. Qiao, B., Ding, X., Hou, X., Wu, S., 2011, “Study on the Electrospun CNTs/Polyacrylonitrile-Based Nanofiber Composites”, Hindawi Publishing Corporation Journal of Nanomaterials, 2011/839462.
  • 13. Wang, K., Gua, M., et al., 2012, “Functionalized carbon nanotube/ polyacrylonitrile composite nanofibers: fabrication and properties”Polym. Adv. Technol., 23 262–271.
  • 14. Andrews, R., Weisenberger, M.C., 2004, “Carbon nanotube polymer composites” , Current Opinion in Solid State and Materials Science, 8, 31–37.
  • 15. Spitalskya, Z.,Tasisb, D., et al., 2010, “Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties”, Progress in Polymer Science, 35 357–401.
  • 16. Rahmat, M., Hubert, P., 2011, “Carbon nanotube–polymer interactions in nanocomposites: A review”, Composites Science and Technology, 72, 72–84.
  • 17. Zhao Z, Yang Z, Hu Y, et al., 2013, “Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups”, Applied Surface Science, 276: 476-481.
  • 18. D257 – 07: Standard Test Methods for DC Resistance or Conductance of Insulating Materials.
  • 19. D4496 – 13: D-C Resistance or Conductance of Moderately Conductive Materials.
  • 20. Hindeleh, A.M., Johnson, D.J., Montague P.E.,1980, “Fibre Diffraction Methods”, (A.D. French and K.H. Gardner Eds.). ACS Symposium Series, No. 141, 149-182, American Chemical Society, Washington DC.
  • 21. Hindeleh, A.M. and Johnson, D.J., 1978 “Crystallinity and crystallite size measurement in polyamide and polyester fibres”, Polymer, 19, 27.
  • 22. Qin, X.,H., Yang, E.L.,et al, 2007, “Effect of different salts on electrospinning of polyacrylonitrile (PAN) polymer solution”, Journal of Applied Polymer Science, Vol.103, 3865–3870.
  • 23. Almuhamed, S., Khenoussi, N., et al, 2012, “Measuring of Electrical Properties of MWNT-Reinforced PAN Nanocomposites”, Journal of Nanomaterials.
  • 24. Lin, T., Wang, H.,et al., 2004, “ The effect of surfactants on the formation of fibre beads during the electrospinning of polystyrene nanofibres”, Polymer Fibres Meetings management’ Manchester, UK, 4.
  • 25. Prestsch E., Bühlmann P., Affolter C., 2000 “Structure Determination of Organic Compounds, Tables of Spectral Data; Springer: New York,
  • 26. U.Bogdanovi’ca, V. Vodnika, S.P. et al., 2014, “Interfacial synthesis and characterization of gold/polyaniline nanocomposites, polyaniline nanocomposites”, Synthetic Metals, 195, 122–131.
  • 27. Khan, A.A, Khalid, M., 2010, “FTIR spectroscopic characterization and isothermal stability of differently doped conductive fibers based on polyaniline and polyacrylonitrile”, Synthetic Metals, 160, 708–712.
  • 28. Saini, P., Choudhary, V., 2013, “Electrostatic charge of dissipation and electromagnetic interference shielding response of polyaniline based conducting fabrics”, Indian Journal of Pure and Applied Physics, 51,112-117.
  • 29. Hu, X., Johnson D.J,, Tomka, J.G.,1995, “Molecular modelling of the structure of polyacrylonitrile fibres”, J. Textile Inst., 86, 322.
  • 30. Luzny, W., Sniechowski, M., Laska, J., 2002, “ Structural properties of emeraldine base and the role of water contents: X-ray diffraction and computer modelling study”, Synthetic Metals, 126, 27.
Tekstil ve Konfeksiyon-Cover
  • ISSN: 1300-3356
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Ege Üniversitesi Tekstil ve Konfeksiyon Araştırma & Uygulama Merkezi
Sayıdaki Diğer Makaleler

A comparison of artificial neural networks and multiple linear regression models as in predictors of fabric weft defects

V.Sinem KARGI ARIKAN

Zinc chloride treated and silicone softened cotton fabric: Effect of washing on antibacterial properties

Onur BALCI, Bayram SIDAR, Mustafa TUTAK

ARAMİD VE GÜÇ TUTUŞUR POLİESTER RİNG İPLİKLERİYLE DOKUNMUŞ KUMAŞLARIN YANMA DAVRANIŞLARI VE MEKANİK ÖZELLİKLERİ

Mustafa ERTEKİN, Erhan KIRTAY

Burning behaviour and mechanical properties of fabrics woven with ring spun aramid and flame retardant polyester yarns

Mustafa ERTEKİN, Erhan KIRTAY

BORSA İSTANBUL'DAKİ TEKSTİL VE HAZIR GİYİM İŞLETMELERİNİN PERFORMANSLARININ DEĞERLENDİRİLMESİ

Turan ATILGAN, Türker SUSMUŞ, Mengü Hafize KÜLAHCI, Seher KANAT

FARKLI LİFLERDEN ÜRETİLMİŞ ÖRME KUMAŞLARIN ISIL KONFOR, NEM İLETİMİ VE TUTUM ÖZELLİKLERİNİN İNCELENMESİ

Banu ÖZGEN, Sevda ALTAŞ

The investigation of thermal comfort, moisture management and handle properties of knitted fabrics made of various fibres

Sevda ALTAŞ2 Banu ÖZGEN1

FARKLI KUMAŞ YAPILARINA VE DİKİŞ TÜRLERİNE AİT DİKİŞ İPLİĞİ TÜKETİM MİKTARLARININ HESAPLANMASI

Soner DOĞAN, Oktay PAMUK

ISLAK HALDEKİ ÖRME KUMAŞLARIN ISIL DİRENÇLERİNİN ÇOKLU REGRESYON ANALİZİ İLE TAHMİNLENMESİ

Z. Evrim KANAT, Nilgün ÖZDİL, Arzu MARMARALI

POLİANİLİN VE AMİN FONKSİYONEL GRUPLU KARBON NANOTÜPLERİN KOMPOZİT NANOLİF ÖZELLİKLERİNE ETKİSİ

Nuray UCAR, Olcay EREN, Aysen ONEN, Nuray KIZILDAG, Nesrin DEMIRSOY, İsmail KARACAN