KUMAŞ ATKI HATASI TAHMİNİNDE YAPAY SİNİR AĞLARI VE ÇOKLU DOĞRUSAL REGRESYON MODELLERİNİN KARŞILAŞTIRILMASI

Firmalar için belirsizliğin tahmini yöneticiler tarafından alınan kararların güvenilirliği için oldukça önemlidir. Günümüz problemleri karmaşık ve çözümü de bilimsel karar vermeyi gerektirir. Bu çalışmanın amacı bir tekstil firmasının kumaş üretiminde ortaya çıkan atkı hatalarını önceden tahmin etmektir. Bu tahmin için çok katmanlı algılayıcı model ve çoklu doğrusal regresyon model teknikleri kullanılmıştır. Çalışmada çok katmanlı algılayıcı model çözümleri için Matlab R2010b programı, çoklu doğrusal regresyon model çözümü için SPSS 13 paket programı kullanılmıştır. Firmanın kumaş atkı hata tahmininde bu iki model kıyaslanmış ve en uygun modelin çok katmanlı algılayıcı model olduğu belirlenmiştir. Bu çalışma yöneylem araştırması tekniklerinden yapay sinir ağ ve çok değişkenli regresyon modellerinin kumaş atkı hatalarının tahmininde faydalı bir araç olarak kullanılabileceğini göstermektedir

A COMPARISON OF ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSION MODELS AS IN PREDICTORS OF FABRIC WEFT DEFECTS

Predicting uncertainty is quite important for the reliability of decisions to be made by business managers. Contemporary problems are complex, and their solutions require scientific decision-making. The aim of this study is to predict weft defects in fabric production for a textile business using a multilayer perceptron model and multiple linear regression models. Matlab R2010b software was used for multilayer perceptron model solutions, and SPSS 13 packet software was used for multiple linear regression model solutions. The results of the two models were compared, and the multilayer perceptron model was identified as the best predictive model. This study shows that in operational research both artificial neural networks and the multiple linear regression model can be successfully used to predict fabric weft errors

Kaynakça

1. Gong, R., H. and Chen, Y.(1999). Predicting the Performance of Fabrics in Garment Manufacturing with Artificial Neural Network, Textile Research Journal, 69(7): 477-482.

2. Ertuğrul, S., Uçar, N.(2000). Predicting Bursting Strength of Cotton Plain Knitted Fabrics Using Intelligent Techniques, Textile Research Journal, 70 (10): 845-851

3. Fan J., Newton E., Au R. and Chan S.C.F. (2001). Predicting Garment Drape with a Fuzzy-Neural Network, Text. Res. J., 71(7), pp 605-608.

4. Zhang, Z., Friedrich K. and Velten, K.(2002). “Prediction on Tribological Properties of Short Fibre Composites Using Artificial Neural Networks”, Wear Journal, 252: 668 672.

5. Jeon B. S., Bae J. H. and Suh M. W. (2003). Automatic Recognition of Woven Fabric Patterns by an Artificial Neural Network, Text. Res. J., 73(7), pp 645- 650.

6. Kuo, C., J., Lee, C., Tsai, C.(2003a), Using a Neural Network to Identify Fabric Defects in Dynamic Cloth Inspection, Textile Research Journal, 73 (3): 238- 244.

7. Kumar A. (2003). Neural Network Based Detection of Local Textile Defects, Pattern Recognition, 36: 1645 – 1659.

8. Zeng, Y.,Wang, K. And Yu, C.(2005). “Predicting the Tensile Properties of Air-Jet Spun Yarns”, Textile Research Journal, 74(8): 689-694.

9. Beltran, R.,Wang, L. and Wang X.(2006). Predicting the Pilling Tendency of Wool Knits, The Journal of the Textile Institute, 97(2): 129-136.

10. Oğulata, S. N. ve diğerleri.(2006). “The Prediction of Elongation and Recovery of Woven Bi-Stretch Fabric Using Artificial Neural Network and Linear Regression Models”, Fibres and Textiles in Eastern Europe, 14(2): 46-49.

11. Islam M.A., Akhter S., Mursalin T.E. & Amin M.A. (2006). A Suitable Neural Network to Detect Textile Defects, King et al. (Eds.): ICONIP 2006, Part II, LNCS 4233: 430 – 438, Springer.

12. Gharehaghaji, A. A., Shanbeh, Mohsen and Palhang, M.(2007).“Analysis of Two Methodologies for Predicting the Tensile Properties of Cotton-Covered Nylon Core Yarns”, Textile Research Journal, 77: 565-571.

13. Furferi, R. and Gelli, M.(2010) “Yarn Strength Prediction: A Practical Model Based on Artificial Neural Networks”, Advances in Mechanical Engineering, doi:10.1155/2010/640103

14. Guruprasad, R. and Behera, B.K.(2010).“Prediction of Bending of Woven Fabrics By Soft Computing”, 7th International Conference TEXSCI, Liberec.

15. Vassiliadis S., Rangoussi, M., Cay A. and Provatidis, C. (2010). Artificial NeuralNetworks and Their Applications in the Engineering of Fabrics, Woven Fabric Engineering, Polona Dobnik Dubrovski.

16. Bahadır, M. Ç.,Bahadır, S. K.and Kaloğlu, F.(2012). An Artificial Neural Network Model for Prediction of Bursting Strength of Knitted Fabrics, International Conference on Machine Learning and Computer Science, Puket, 11-12 August.

17. Haykın, S.(1999). Neural Networks: A Comprehensive Foundation, New Jersey.

18. Krycha K. A. and Wagner U. (1999), “Applications of Artificial Neural Networks in Management Science: A Survey”, Journal of Retailing and Consumer Services, Vol. 6, p. 185 – 203.

19. Lippmann, R. P.(1987). An Introduction to Computing with Neural Nets, IEEE ASSP Magazine.

20. Öztemel, E.(2003). Yapay Sinir Ağları, Papatya Yayıncılık, İstanbul.

21. Tso GK, Yau KK (2007). Predicting Electricity Energy Consumption: A Comparision of Regression Analysis, Decision Tree and Neural Networks. Energy, 32: 1761-1768.