FARKLI AKTİVASYON PROSES PARAMETRELERİ İLE ÜRETİLEN AKTİVE EDİLMİŞ KARBON NANOLİFLERİN SO2 ADSORPSİYON ÖZELLİKLERİ

Bu çalışmada, aktivasyon süresi (30 dakika ve 60 dakika) ve aktivasyon gaz (CO2) besleme hızları (100 mL/dak ve 150 mL/dak) değiştirilerek, aktif karbon nanoliflerin, zararlı SO2 gazını adsorplama özelliği incelenmiştir. FTIR analizinde 1050 cm-1 civarlarında görülen pik ve SEM-EDS elemental analizde tespit edilen S elementi, adsorplamanın gerçekleştiğini göstermektedir. CO2 besleme hızı azaldıkça ve aktivasyon süresi arttıkça, SO2 adsorplama miktarının arttığı, her iki parametrenin artması ile aktive olmuş nanolifin lif çapının düştüğü görülmüştür. SO2 adsorplama kapasitesine tesir bakımından, aktivasyon süresi değişiminin, CO2 besleme hızı değişiminden daha fazla tesirli olduğu tespit edilmiştir.

SO2 ADSORPTION CAPABILITY OF ACTIVATED CARBON NANOFIBERS PRODUCED BY DIFFERENT ACTIVATION PROCESS PARAMETERS

In this study, the effect of activation time and flow rate of CO2 on the SO2 adsorption properties of activated carbon nanofiber has been investigated. The activation process was performed under different CO2 flow rates (100 and 150 mL/min) and activation times (30 and 60 minutes). At the FTIR spectra, the formation of a new peak at around 1050 cm-1 after SO2 adsorption test, showed the presence of SO2 adsorbed on the activated carbon nanofibers. The elemental analyses also confirmed the presence of S atom in the analysed sample after SO2 adsorption test. It has been seen that an increase in activation time and decrease in CO2 feeding rate resulted in an increase in SO2 adsorption capability of activated carbon nanofibers. Rather than the flow rate of the activation gas, activation time has higher effect on the SO2 adsorption capability of activated carbon nanofibers.

___

  • 1. Lu, G.Q., Do, D.D., 1991, “Preparation of Economical Sorbents for SO2 and NOx Removal Using Coal Washery Reject”, Carbon, 29, 207–213.
  • 2. Plens, A.C.O., Monaro, D.L.G., Coutinho, A.R., 2015, “Adsorption of SOX and NOX in Activated Viscose Fibers”, Anais da Academia Brasileira de Ciências, 87 (2), 1149–1160.
  • 3. Bagreev, A., Bashkova, S., Bandosz, T.J., 2002, “Adsorption of SO2 on Activated Carbons: The Effect of Nitrogen Functionality and Pore Sizes”, Langmuir, 18, 1257–1264. TEKSTİL ve KONFEKSİYON 26(4), 2016 413
  • 4. Liu, W., Adanur, S., 2015, “Desulfurization Properties of Modified Activated Carbon Fibers and Activated Carbon Fiber Paper”, Journal of Industrial Textiles, 44(4), 513–525.
  • 5. Liu, W., Adanur, S., 2014, “Desulfurization Properties of Activated Carbon Fibers, Journal of Engineered Fibers and Fabrics”, 9(2), 70–75.
  • 6. Mochida, I., Miyamoto, S., Kuroda, K., Kawano, S., Yatsunami, S., Korai, Y., Yasutake, A., Yoshikawa, M., 1999, “Adsorption and Adsorbed Species of SO2 During Its Oxidative Removal over Pitch-Based Activated Carbon Fibers”, Energy & Fuels, 13(2), 369–73.
  • 7. Song, X., Wang, Z., Li, Z., Wang, C., 2008, “Ultrafine Porous Carbon Fibers for SO2 Adsorption via Electrospinning of Polyacrylonitrile Solution”, Journal of Colloid and Interface Science, 327, 388–392.
  • 8. Cuervo, M.R., Asedegbega-Nieto, E., Diaz, E., Vega, A., Ordonez, S., Castillejos-Lopez, E., Rodriguez-Ramos, I., 2008, “Effect of Carbon Nanofiber Functionalization on the Adsorption Properties of Volatile Organic Compounds”, Journal of Chromatography A, 1188(2), 264–273.
  • 9. Ramos, M.E., Bonelli, P.R., Cukierman, A.L., Carrott, M., Carrott, P.J.M., 2010, “Adsorption of Volatile Organic Compounds onto Activated Carbon Cloths Cerived from a Novel Regenerated Cellulosic Precursor”, Journal of Hazardous Materials, 177(1–3), 175–182.
  • 10. Shim, W.G., Kim, C., Lee, J.W., Yun, J.J., Jeong, Y.I., Moon, H., Yang, K.S., 2006, “Adsorption Characteristics of Benzene on Electrospun-derived Porous Carbon Nanofibers”, Journal of Applied Polymer Science, 102(3), 2454–2462.
  • 11. Hsieh, C.T., Chou, Y.W., 2006, “Fabrication and vapor-phase Adsorption Characterization of Acetone and n-hexane onto Carbon Nanofibers”, Separation Science and Technology, 41(14), 3155–3168.
  • 12. Lee, K.J., Shiratori, N., Lee, G.H., Miyawaki, J., Mochida, I., Yoon, S.H., Jang, J., 2010, “Activated Carbon Nanofiber Produced from Electrospun Polyacrylonitrile Nanofiber as a Highly Efficient Formaldehyde Adsorbent”, Carbon, 48(15), 4248–4255.
  • 13. Nabais, J.M.V, Canario, T., Carrott, P.J.M, Carrott, R.M.M.L., 2007, “Production of Activated Carbon Cloth with Controlled Structure and Porosity from a New Precursor”, Journal of Porous Materials, 14, 181–190.
  • 14. Wiles, K.B., 2002, “Determination of Reactivity Ratios for Acrylonitrile/methyl acrylate Radical Copolymerization via Nonlinear Methodologies Using Real Time FTIR”, MSc thesis, Faculty of the Virginia Polytechnic Institute and State University: Blacksburg, Virginia.
  • 15. Schwartz, M., 2002, “Encyclopedia of materials, parts, and finishes”, 2nd ed. Boca Raton, Florida: CRC Press.
  • 16. Song, Y., Qiao, W., Yoon, S.H., Mochida, I., Guo, Q., Liu, L., 2007, “Removal of formaldehyde at low concentration using various activated carbon fibers”, Journal of Applied Polymer Science, 106(4), 2151–2157.
  • 17. Cho, C.W., Cho, D., Ko, Y., Kwon, O.H., Kang, I., 2007, “Stabilization, Carbonization, and Characterization of PAN Precursor Webs Processed byElectrospinning Technique”, Carbon Letters, 8(4), 313–320.
  • 18. Barranco, V., Lillo-Rodenas, M.A., Linares-Solano, A., Oya, A., Pico, F., Ibanez, J., Agullo-Rueda, F., Amarilla, J. M., Rojo, J.M., 2010, “Amorphous Carbon Nanofibers and Their Activated Carbon Nanofibers as Supercapacitor Electrodes”, The Journal of Physical Chemistry C, 114, 10302–10307.
  • 19. Tavanai, H., Jalili, R., Morshed, M., 2009, “Effects of fiber diameter and CO2 activation temperature on the pore characteristics of polyacrylonitrile based activated carbon nanofibers”, Surface and Interface Analysis, 41, 814–819.
  • 20. Feng, L., Xie, N., Zhong, J., 2014, “Carbon Nanofibers and Their Composites: A Review of Synthesizing, Properties and Applications”, Materials, 7, 3919–3945.
  • 21. Kim, B.H., Bui, N.N., Yang, K.S., Cruz, M.E, Ferraris, J.P.,2009, “Electrochemical Properties of Activated Polyacrylonitrile/pitch Carbon Fibers Produced Using Electrospinning”, Bulletin of the Korean Chemical Society, 30(9), 1967–1972.
  • 22. Lee, H.M., Kang, H.R., An, KH., Kim, H.G., Kim, B.J., 2013, “Comparative studies of porous carbon nanofibers by various activation methods”, Carbon Letters, 14(3), 180–185.
  • 23. Wu, Y., Bi, J., Lou, T., Song, T., Yu, H., 2015, “Preparation of a novel PAN/cellulose acetate-Ag based activated carbon nanofiber and its adsorption performance for low-concentration SO2”, International Journal of Minerals, Metallurgy and Materials, 22(4),437–445.
  • 24. Sullivan, P., Moate, J., Stone, B., Atkinson, J.D., Hashisho, Z., Rood, M.J., 2012, “Physical and chemical properties of PAN-derived electrospun activated carbon nanofibers and their potential for use as an adsorbent for toxic industrial chemicals”, Adsorption, 18, 265–274.
  • 25. Qin, Y., Wang, Y., Wang, H., Gao, J., Qu, Z., 2013, “Effect of morphology and pore structure of SBA-15 on toluene dynamic adsorption/desorption performance”, Procedia Environmental Sciences, 18, 366–371.
  • 26. Billemont, P., Coasne, B., De Weireld, G., 2013, “Adsorption of carbon dioxide, methane, and their mixtures in porous carbons: effect of surface chemistry, water content, and pore disorder”, Langmuir, 29, 3328–3338.
  • 27. Bhati, S., Mahur, J.S., Dixit, S., Choubey, O.N., 2013, “Surface and adsorption properties of activated carbon fabric prepared from cellulosic polymer: mixed activation method”, Bulletin of the Korean Chemical Society, 34, 569–573.
  • 28. Ra, E.J., Kim T.H., Yu, W.J., An, K.H., Lee, Y.H., 2010, “Ultramicropore formation in PAN/camphor-based carbon nanofiber paper”, Chemical Communications, 46, 1320–1322.
  • 29. Bai, B.C.,Kim, J.G., Im, J.S., Jung, S.C., Lee, Y.S., 2011, “Influence of oxyfluorination on activated carbon nanofibers for CO2 storage”, Carbon Letters, 12(4), 236–242.
  • 30. Mao, X., Hatton, T.A., Rutledge, G.C., 2013, “A Review of Electrospun Carbon Fibers as Electrode Materials for Energy Storage” Current Organic Chemsitry, 17(13), 1390–1401.
  • 31. Cloirec, P., Brasquet, C., Subrenat, E., 1997, “Adsorption onto fibrous activated carbon: applications to water treatment”, Energy & Fuels, 11(2), 331–336.
  • 32. Colthup, N.S., Daly L.H., Wiberly S.E., 1964, “Introduction to Infrared and Raman Spectroscopy”, Academic Press, New York, USA.
  • 33. Monah, D., Sinqh, KP., Sinqh, V.K., 2005, “Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth”, Ind. Eng. Chem. Res.,44(4):1027-42
  • 34. Bai,B.C., Kim, J.G., Im, J.S., Jung, S.C., Lee, Y.S., 2011, “Influence of oxyfluorination on activated carbon nanofibers for CO2 storage”, Carbon Letters, 12(4), 236–242.