ANANAS YAPRAK LİFİ

Lif ile güçlendirilmiş polimerik kompozitlere olan ilgi, bunların yüksek spesifik mukavemet ve modülleri nedeniyle geçmiş yıllarda artmıştır. Kompozitlerde genel olarak yüksek mukavemetli sentetik lifler kullanılsa da, doğal selülozik liflerin polimerik matrikslerde güçlendirici olarak kullanımı önem kazanmaktadır. Bu lifler karbon ve aramid kadar sağlam olmasalar da, düşük fiyat ve biyolojik olarak parçalanabilirlik gibi önemli avantajları bulunmaktadır. Bunların dışında, birçok selülozik lif yıllık olarak hasat edilebilmekte ve petrolden elde edilen sentetik lifler ile kıyaslandığında kaynakları tükenmez olarak nitelendirilebilmektedir. Doğal bir lif olan ananas lifinin kompozitlerde kullanımına ilgi de yüksek selüloz içeriği, düşük fiyatı ve biyolojik olarak parçalanabilirliği nedeni ile artmaktadır. Bu çalışmada ananas lifi ile ilgili genel bilgiler verilmiştir

PINEAPPLE FIBER

In recent years, fibre-reinforced polymeric composites have received attention because of their high specific strength and modulus. Although, generally high strength synthetic fibres are used in the composites, there has been a growing interest in the use of natural cellulosic fibres as the reinforcement for polymeric matrix. While these fibres may not be as strong as carbon and aramid, their main advantages are low cost and biodegradability. Further, most cellulosic fibres are harvested yearly and the supply should be inexhaustible compared to the limited supply of the oil reserve from which many synthetic fibres are derived. The interest of the usage of natural pineapple fiber as reinforcement in composites is also increasing due to its hich cellulose content, low price and biodegradabilty. This paper is concerned about the general properties of pineapple fibers

___

  • 1. Arib R.M.N., Sapuan S.M., Ahmad M.M.H.M. , Paridah M.T., Khairul Zaman H.M.D., “Mechanical properties of pineapple leaf fibre reinforced polypropylene composites”, doi: 10. 1016/ j. matdes.2004.11.009.
  • 2. http://www.gironet.nl/home/lind3/blad1/.
  • 3. Mohanty A. K., Parııa S., Mlsra M., “Ce(1V)-N-Acetylglycine Initiated Graft Copolymerization of Acrylonitrile onto Chemically Modified Pineapple Leaf Fibers”, Journals of Applied Polimer Science, Vol60, 931-937(1996).
  • 4. “The Biology & Ecology of Pineapple (Ananas comosus var. comosus) in Australia”, Office of the GeneTechnology Regular, April 2003.
  • 5. Mohanty A. K., Trıpathy P. C., Mısra M., Parıja S., Sahoo S., “Chemical Modification of Pineapple Leaf Fiber: Graft Copolymerization of Acrylonitrile onto Defatted Pineapple Leaf Fibers”, Journal of Applied Polymer Science, Vol. 77, 3035–3043 (2000).
  • 6. Luo S., Netravalı A. N., “Interfacial and mechanical properties of environmentfriendly “green” composites made from pineapple fibers and poly (hydroxybutyrate-co-valerate) resin”, Journal Of Materıals Scıence 34 (1999) 3709 – 3719. 7. Liu W., Misra M., Askeland P., Drzaa, T., Mohanty A., “‘Green’ composites from soy based plastic and pineapple leaf fiber: fabrication and properties evaluation”, Polymer Volume 46, Issue 8, 29 March 2005, Pages 2710-2721).
  • 8. Luo S., Netravalı A. N., “Mechanical and Thermal Properties of EnvironmentFriendly "Green" Composites Made From Pineapple Leaf Fibers and PoIy (hydroxybutyrate-co-va lerate) Resin Polymer Composıtes”, June 1999, Vol. 20, No. 3.
  • 9. Uma Devı L., Bhagawan S. S., Thomas S., “Mechanical Properties of Pineapple Leaf Fiber-Reinforced Polyester Composites”, 1997 John Wiley & Sons, Inc. CCC 0021-8995/97/091739-10.