Rijit Gövdeli Bitkilerin Neden Olduğu Manning Katsayısının Araştırılması

Doğal akış yatakları veya yapay taşkın yataklarında akım incelenirken bitkilerin sebep olduğu direnç kuvvetinin bir eşitlik yardımıyla belirlenmesi önemli bir konudur. Manning, Chezy, Darcy-Weisbach gibi eşitliklerde kullanılan direnç katsayıları, daha çok çeper özelliklerini temsil eden deneysel katsayılardır. Açık kanal şartlarında var olan veya akış kesitini kontrol etme amaçlı insanoğlunun planladığı bitkisel akış alanlarında akım hızının, su derinliğinin veya akış hacminin ampirik olarak çözülmesi planlama ve işletme süreçlerini olumlu yönde etkileyecektir. Bu çalışmada, akış kesitinde oluşacak direnç kuvvetinin, bitkilerin ve akışın fiziksel şartlarına bağlı olarak nasıl değiştiği incelenmiş ve doğrusal olmayan bir regresyon modeli önerilmiştir

-

Investigation of Manning Coefficient Caused by Rigid Body PlantsTo study flows in man-made or natural channels, the identification of the roughness caused by vegetation is important. The roughness parameters used in several equations such as Manning, Chezy, and Darcy-Weisbach are the experimental coefficients that represent mostly sidewall characteristics. In open channel flows having natural or man-made vegetation to control the flow sections, the knowledge of flow velocities, flow depths and/or flow rates are crucial for planning and management studies. For such studies, the quantification of the roughness caused by the vegetation becomes vital. In this study, roughness caused by vegetation in open channel flows is investigated experimentally and a non-linear regression equation relating Manning roughness coefficient to flow and vegetation characteristics is proposed

___

  • Çeçen, K., Hidrolik - Cilt II, İstanbul, İTÜ Yayınları, 1969.
  • Çeçen, K., Hidrolik - Cilt I, İstanbul, İTÜ Yayınları, 1967.
  • Özgür, C., Deneysel Hidromekanik, İTÜ Makina Fakültesi, 1980.
  • Rouse, H., Critical analysis of open-channel resistance, Journal Hydraulic Division, ASCE., 91, HY4, 1-25, 1965.
  • Chow, V. T., Open-Channel Hydraulics, McGraw–Hill, New York, 1959.
  • Dawson, F. H., Charlton, F. C., Bibliography on the hydraulic resistance or roughness of vegetated water courses, Occasional Publication No. 25, Freshwater Biological Association, Ambleside, U.K., 1988.
  • Fishenich, J. C., Flow resistance in vegetated channels: summary of the literature, Tech. Rep. HL-94-xx, USACE Waterways Experiment Station, USA, 1994.
  • Wu, B.F.C., Shen, H. W., Chou, Y. J., Variatıon of roughness coeffıcients for unsubmerged and submerged vegetation, Journal of Hydraulic Engineering, 125, 934- 942, 1999.
  • Jarvela, J., Flow Resistance of Flexible and Stiff Vegetation: A Flume Study with Natural Plants, Journal of Hydrology, 269, 44 - 54, 2002.
  • Stone, B. M., Shen, H. T., Hydraulic Resistance of Flow in Channels with Cylindrical Roughness, Journal of Hydraulic Engineering, 128, 500-506, 2002.
  • James, C.S., Birkhead, A.L., Jordanova, A. A., O’Sullivan, J. J., Flow resistance of emergent vegetation, Journal of Hydraulic Research, Vol. 42, No. 4, 390–398, 2004.
  • Albertson, M.L., Barton, J.R., Simons, D.B., Fluid Mechanics for Engineers, NewYork, USA, Prentice Hall, 1960.
  • Musleh, F. A., Cruise, J. F., Functional Relationships of Resistance in Wide Flood Plains with Rigid Unsubmerged Vegetation, Journal of Hydraulic Engineering, 132(2), 163-171, 2006.
  • Wilson, C.A.M.E., Flow resistance models for flexible submerged vegetation, Journal of Hydrology, 342, 213 - 222, 2007.
  • Wu, F. S., Characteristics of Flow Resistance in Open Channels with Non-Submerged Rigid Vegetation, Journal of Hydrodynamics, 20(2), 239-245, 2008.
  • Hui, E.Q., Hu, X. E., Study of Drag Coefficient Related With Vegetation Based on The Flume Experiment, Journal of Hydrodynamics, 22(3), 329 - 337, 2010.
  • Wang, P.F., Wang, C., Hydraulic Resistance of Submerged Vegetation Related to Effective Height, Journal of Hydrodynamics, 22(2), 265 - 273, 2010.
  • Shucksmith, J. D., Boxall, J. B., Guymer, I., Bulk Flow Resistance in Vegetated Channels: Analysis of Momentum Balance Approaches Based on Data Obtained in Aging Live Vegetation, Journal of Hydraulic Engineering, 137, 1624-1635, 2011.
  • Pham, N., Penning, E., Mynett, A., Raghuraj, R., Effects of Submerged Tropical Macrophytes on Flow Resistance and Velocity Profiles in Open Channels, International Journal of River Basin Management, Vol. 9, 3 - 4, 195- 203, 2011.
  • Cheng, N. S., Nguyen, H. T., Hydraulic Radius for Evaluating Resistance Induced by Simulated Emergent Vegetation in Open-Channel Flows, Journal of Hydraulic Engineering, 137, 995-1004, 2011.
  • Dharmasiri, N., Yang, S. Q., Han, Y., Effects of Roughness Density on the Determination of Flow Resistance in Spatially Averaged Vegetated Open Channel Flow, World Environmental and Water Resources Congress 2012: Crossing Boundaries, 1349-1365, 2012.
  • Noarayanan, L., Murali, K., Sundar, V., Manning’s ‘n’ Co-Efficient for Flexible Emergent Vegetation in Tandem Configuration, Journal of Hydro-environment Research, 6, 51 - 62, 2012.
  • Freeman, G.E., Rahmeyer, W.H., Copeland, R.R., Determination of Resistance Due to Shorts and Woody Vegetation, Rep.ERDC/CHLTR-00-25. Engineer Research and Development Center, USACE, USA, 2000.
  • Shi, J. Z., Li, Y. H., Hughes, J. M.R., Zhao, M., Hydrological Characteristics of Vegetated River Flows: A Laboratory Flume Study, Hydrological Sciences Journal, 58 (5), 1047 - 1058, 2013.
  • Tayfur, G., Soft computing methods in water resources engineering, WIT Press, Southampton, England, UK, 2012.