Çelik-Beton Kompozit Kat Döşemesi Yangın Dayanım Deneyi

Bu çalışmada, Türkiye’de araştırma odaklı ilk çelik-beton kompozit kat döşemesi yapısal yangın deneyi gerçekleştirilmiştir. Bu çalışma, Türkiye’de gerek yangın yönetmelikleri açısından gerekse yapısal yangın konusunda teorik, nümerik ve deneysel araştırmalardaki eksiklikleri gidermeyi amaçlamaktadır. Yüksek katlı çelik bir yapı için tasarlanmış kompozit döşemenin iki kenarında simetrik bir birleşim mekanizması kullanılmıştır. Yangın fırınına monte edildikten sonra döşemenin alt yüzeyi ISO834 standart yangın eğrisiyle 105 dakika ısıtılmış ve sonrasında 90 dakika kontrollü olarak soğutulmuştur. Deney sırasında yapının sehim ve sıcaklık ölçümleri yapılmıştır. Alınan sonuçlar, beton döşemenin membran davranışı göstererek yük taşıyıcı özelliğini yangın boyunca devam ettirdiğini göstermektedir. Dolayısıyla kompozit kat döşemelerinde ikincil çelik kirişlerin yalıtımsız kalması  önerilmektedir.  

Fire Resistance Test of a Steel-Concrete Floor System

This study conducts the first research based structural fire resistance test of a steel-concrete composite floor in Turkey. The goal of this research is to fill the knowledge gaps in the current Turkish building code for the structural fire safety and provide valuable insight for the development of new theoretical, computational and experimental research. The tested composite floor is specifically designed for a high-rise steel building. The floor is equipped with a patent pending mechanism to provide symmetric boundary conditions on two edges. The floor is subjected to ISO-834 standard fire curve from the bottom surface for 105 minutes followed by 90 minutes cooling. Displacement and temperature measurements show that at elevated temperatures, the concrete slab carries the load by the tensile membrane action without a contribution of the secondary beam. This study suggests that secondary steel beams do not need to be fire protected as the concrete slab is adequate to carry the gravity loading.

___

  • [1] Gann, RG. Final report on the collapse of World Trade Center Building 7, Federal building and fire safety investigation of the World Trade Center disaster, NCSTAR-1A, NIST, 2008.
  • [2] The Geneva Association, World Fire Statistics Newsletter, 29, 2014.
  • [3] Beitel J and Iwankiw N., Analysis of needs and existing capabilities for full-scale fire resistance testing, National Institute of Standards and Technology, NIST GCR, 02-843, 2002.
  • [4] British Steel plc, Swinden Technology Centre U. The behaviour of multi-storey steel framed buildings in fire, Technical report, British Research Establishment (BRE), UK, 1999.
  • [5] Bailey CG., The structural behaviour of steel frames with composite floor slabs subject to fire: Part 1: Theory, The Structural Engineer, 78(11), 19-27, 2000.
  • [6] Bailey CG., Membrane action of slab/beam composite floor systems in fire, Engineering Structures, 26, 1691-1703, 2004.
  • [7] Bailey CG. and Toh WS., Small-scale concrete slab tests at ambient and elevated temperatures, Engineering Structures, 29, 2775-2791, 2007.
  • [8] Buchanan Andrew H., Structural Design for Fire Safety, New York, Wiley, 2001.
  • [9] Wald F, da Silva LS, Moore D, Lennon T, Chladna M, Santiago A, Benes M, and Borges L., Experimental behaviour of a steel structure under natural fire, Fire Safety Journal, 41(7), 509–522, 2006.
  • [10] Astaneh-Asl A, Liu J, McMullin KM., Behavior and design of single plate shear connections, Journal of Constructional Steel Research, 58(5-8), 1121-41, 2002.
  • [11] Garlock ME and Selamet S., Modeling and behavior of steel plate connections subject to various fire scenarios, Journal of Structural Engineering, ASCE, USA, 136(7), 897–906, 2010.
  • [12] Selamet S, Garlock ME., Robust fire design of single plate shear connections. Engineering Structures, 32(8), 2367-2378, 2010.
  • [13] Chung KF and Ip KH., Finite element investigation on the structural behaviour of cold-formed steel bolted connections, Engineering Structures, 23(9), 1115-25, 2001.
  • [14] El-Rimawi JA, Burgess IW, Plank RJ., The influence of connection stiffness on the behaviour of steel beams in fire, Journal of Constructional Steel Research, 43(1-3), 1997.[15] Selamet S, Garlock ME., Predicting the maximum compressive beam axial force during fire considering local buckling, Journal of Constructional Steel Research, 71, 189-201, 2012.
  • [16] Selamet S, Garlock ME., Plate buckling strength of steel wide-flange sections at elevated temperatures. Journal of Structural Engineering, ASCE 2013; 139(11): 1853-1865.
  • [17] Selamet S, Bolukbas C., Fire resilience of shear connections in a composite floor: Numerical investigation, Fire Safety Journal, doi:10.1016/j.firesaf.2016.02.003, 2016.
  • [18] Kirby BR., The behaviour of high-strength Grade 8.8 bolts in fire, Journal of Constructional Steel Research, 33(1-2): 3-38, 1995.
  • [19] Binaların yangından korunması hakkında yönetmelik, Resmi Gazete, Sayı 27344, 2009.
  • [20] “Simetrik sınır koşulları sağlayan bir yangın dayanım test mekanizması”, Evrak tarihi: 26.11.2015, Evrak No: 2015-GE-436248, Dosya No: 2015/14992
  • [21] CEN. ENV 1991-1-2:2002 – Eurocode 1, Actions on structures, Part 1.2: General actions – Actions on structures exposed to fire, Brussels, 2002.
  • [22] CEN. ENV 1993-1-2:2005 – Eurocode 3, Design of steel structures, Part 1.2: General rules – Structural fire design, Brussels, 2005.