Batı Akdeniz Havzası Sınırlarının Yüksek Doğrulukla Belirlenmesi

Bu çalışmada Batı Akdeniz Havzası sınırlarının yüksek doğrulukla belirlenmesi amaçlanmıştır. Bu amaç doğrultusunda 1:25,000 ölçekli yüksek doğruluklu 3 boyutlu vektör yükseklik ve hidrografya verileri kullanılarak coğrafi bilgi sistemleri araçlarıyla 10 m çözünürlüklü sayısal yükseklik modeli üretilmiş ve bu modelden havza sınırları türetilmiştir. Birinci düzey alt havzalardan biri Avlan Gölü’ne karşılık gelen çukur nesnesine dayalı olarak türetilen kapalı havzadır. Bu havza mevcut havza setlerinde bulunmamaktadır. Havza sınırlarının ve sayısal yükseklik modelinin doğruluğu sırasıyla ağırlıklı karesel ortalama yatay ve düşey konum hatalarına göre değerlendirilmiştir. Sonuç olarak, elde edilen havza sınırlarının ve sayısal yükseklik modelinin yüksek doğruluklu olduğu söylenebilir.

___

  • Acar, U., Sayısal arazi modelleri ve kullanılan enterpolasyon yöntemleri. Yüksek Lisans Tezi. Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 1994.
  • Hutchinson, M.F., A new procedure for gridding elevation and stream data with automatic removal of spurious pits”, Journal of Hydrology, 106, 211-232, 1989.
  • Hengl, T., Evans, I.S., Mathematical and digital models of the land surface. Developments in Soil Science, 33, 31-63, 2009.
  • Finsterwalder, R., Zur Bestimmung von Tal-und Kammlinien, Zeitschrift für Vermessung Wesen, 111 (5), 184-89,1986.
  • Gökgöz, T., Generalization of contours using deviation angles and error bands, The Cartographic Journal, 42 (2), 145-156, 2005.
  • Li, Z.L., Zhu, Q., Gold, C., Digital Terrain Modeling: Principles and Methodology. New York: CRC Press, 2005.
  • Chang, K.T., Introduction to Geographic Information Systems (3. Basım). New York: Mc Graw Hill, 2006.
  • O’Callaghan, J.F., Mark, D. M., The extraction of drainage networks from digital elevation data, Computer Vision, Graphics and Image Processing, 28 (3), 323-344, 1984.
  • Mark, D. M., “Automated detection of drainage networks from digital elevation models”, Cartographica, 21 (2-3), 168-178, 1984.
  • Jenson, S.K., Dominque, J.O., Extracting topographic structure from digital elevation data for geographic information system analysis, Photogrammetric Engineering and Remote Sensing, 54 (11), 1593-1600, 1988.
  • Zhou Q., Liu X., Error assessment of grid-based flow routing algorithms used in hydrological models, International Journal of Geographical Information Science, 16 (8), 819- 842, 2002.
  • Zhang, W., Fu, C., Yan, X., Automatic watershed delineation for a complicated terrain in the heihe river basin, Northwestern China, IEEE International Geoscience and Remote Sensing Symposium, 4, 2347-2350, 2005.
  • Gökgöz, T., Uluğtekin, N., Başaraner, M., Gülgen, F., Doğru, A. Ö., Bilgi, S., Yücel, M. A., Çetinkaya, S., Selçuk, M., Uçar, D., Watershed delineation from grid DEMs in GIS: effects of drainage lines and resolution, 10th International Specialised Conference on Diffuse Pollution and Sustainable Basin Management, 18-22 Eylül, İstanbul, Türkiye, 2006.
  • Fairfield, J., Leymarie, P., Drainage networks from grid digital elevation models, Water Resources Research, 27 (5), 709-717, 1991.
  • Tribe, A., Automated recognition of valley lines and drainage networks from grid digital elevation models: a review and a new method, Journal of Hydrology, 139, 263-293, 1992.
  • Costa-Cabral, M.C., Burges, S.J., Digital elevation model networks (DEMON): a model of flow over hillslopes for computation of contributing and dispersal areas, Water Resources Research, 30 (6), 1681-1692, 1994.
  • Tarboton, D.G., A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resources Research, 33 (2), 309-319, 1997.
  • Garbrecht, J., Martz, L.W., The assignment of drainage over flat surfaces in raster digital elevation models, Journal of Hydrology, 193, 204-213, 1997.
  • Martz, L.W., Garbrecht, J., The treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models, Hydrological Processes, 12, 843-855, 1998.
  • Turcotte, R., Fortin, J.P., Rousseau, A.N., Massicotte, S., Villeneuve, J.P., Determination of the drainage structure of a watershed using a digital elevation model and a digital river and lake network, Journal of Hydrology, 240, 225-242, 2001.
  • Jones, R., Algorithms for using a DEM for mapping catchment areas of stream sediment samples, Computers & Geosciences, 28 (1), 1051-1060, 2002.
  • Gülgen, F., Gökgöz, T., A new algorithm for extraction of continuous channel networks without problematic parallels from hydrologically corrected DEMs, Boletim de Ciencias Geodesicas, 16 (1), 20-38, 2010.
  • Olivera, F., Furnans, J., Maidment, D.R., Djokic, D., Ye, Z., ArcHydro: GIS for Water Resources. Editör: Maidment, D. R., Redlands: ESRI Press, 2002.
  • Tang, G.A., A Research on the Accuracy of Digital Elevation Models. Beijing, Science Press, 2000.
  • Heine, R.A., Lant, C.L., Sengupta, R.R., Development and Comparison of Approaches for Automated Mapping of Stream Channel Networks, Annals of the Association of American Geographers, 94 (3), 477-490, 2004.
  • EU Water Framework Directive. “Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy”. http://ec.europa.eu/environment/water/water-framework/index_en.html Son erişim tarihi:19 Mart 2017.
  • Çölleşme ve Erozyonla Mücadele Genel Müdürlüğü. “Su Politikası Alanında Topluluk Faaliyeti için bir Çalışma Çerçevesi Oluşturan 23 Ekim 2000 tarihli AVRUPA PARLAMENTOSU VE KONSEYİNİN 2000/60/EC SAYILI DİREKTİFİ”. http://www.cem.gov.tr/erozyon/Files/faaliyetler/dis_iliskiler/Avrupa_Birligi/AB_Su_Cerceve_Tur.pdf Son erişim tarihi: 19 Mart 2017.
  • Coğrafi Bilgi Sistemleri Genel Müdürlüğü. “INSPIRE Yol Haritası”. http://www.csb.gov.tr/gm/cbs/index.php?Sayfa=sayfa&Tur=webmenu&Id=36623. Son erişim tarihi: 19 Mart 2017.
  • INSPIRE Thematic Working Group Hydrography. “D2.8.I.8 INSPIRE Data Specification on Hydrography – Guidelines” http://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_HY_v3.0.1.pdf Son erişim tarihi: 19 Mart 2017.
  • Hengl, T., Finding the right pixel size, Computers & Geosciences, 32, 1283-1298, 2006.
  • Weihau, Z., Montgomery, D., Digital elevation model grid size, landscape representation, and hydrologic simulations, Water Resources Research, 30 (4), 1019-1028, 1994.
  • Erdoğan, M., Veri Türü, Kalitesi ve Üretim Yöntemine Göre Sayısal Yükseklik Modeli (SYM) Standartlarının Belirlenmesi. Doktora Tezi. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 2007.
  • Multinational Geospatial Co-production Program Technical Reference Documentation, (Inherent Report) 2009, Harita Genel Komutanlığı, Ankara.
  • American Society for Photogrammetry and Remote Sensing (ASPRS). ASPRS Positional Accuracy Standards for Digital Geospatial Data. http://www.asprs.org/a/society/committees/standards/ASPRS_Positional_Accuracy_Standards_Edition1_Version100_November2014.pdf Son erişim tarihi: 19 Mart 2017.
  • United States National Map Accuracy Standards, Office of Management and Budget, Washington, D.C. https://nationalmap.gov/standards/pdf/NMAS647.PDF Son erişim tarihi: 19 Mart 2017.
  • Federal Geographic Data Committee, 1998. FGDC-STD-007.3-1998, Geospatial Positioning Accuracy Standards, Part 3: National Standard for Spatial Data Accuracy (NSSDA), FGDC, c/o U.S. Geological Survey. https://www.fgdc.gov/standards/projects/FGDC-standards-projects/accuracy/part3/chapter3 Son erişim tarihi: 19 Mart 2017.