Temperlenmiş Beynitik Bir Çeliğin Balistik Davranışı

Bu çalışmada, temperlenmiş beynitik bir çeliğin 7,62 mm kalibre bir zırh delici ile olan etkileşimi sonrasında meydana gelen hasar incelenmiştir. Mermi çarpma hızı 840 m/s olup atış sıfır derecelik bir açıda gerçekleştirilmiştir. Atış sonrası oluşan delinme yöresinden alınan numune üzerinde mikroyapısal ve fraktografik incelemeler yapılmıştır. Dağlanmış numunede, penetrasyon doğrultusuna yakın yörelerde orijinal mikroyapı morfolojisinin değiştiği ve kayma/adyabatik kayma bantlarının oluştuğu gözlenmiştir. Çeliğin delinme modu ise tipik bir taçyaprağı şeklinde açılmadır

Temperlenmiş Beynitik Bir Çeliğin Balistik Davranışı

Keywords:

-,

___

  • Beckman, E., Finnegan, S. A., 1973. Metallurgical Effects at High Strain Rates, Plenum Press, USA.
  • Borvik, T., Dey, S., Clausen, A. H., 2009. Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles. International Journal of Impact Engineering, 36 (7): 948-964.
  • Demir, T., Übeyli, M., Yıldırım, R. O., 2008. Investigation on the ballistic impact behavior of various alloys against 7.62 mm armor piercing projectile. Materials & Design, 29 (10): 2009-2016.
  • Dikshit, S. N., 2000. Influence of hardness on perforation velocity in steel armour plates. Defence Science Journal, 50 (1): 95-99.
  • Edwards, M. R., Mathewson, A., 1997. The ballistic properties of tool steel as a potential improvised armour plate. International Journal of Impact Engineering, 19 (4) : 297-309.
  • Gama, B. A., Bogetti, T. A., Fink, B. K., Yu, C. J., Claar, D., Eifert, H. H., Gillespie, J. W., 2001. Aluminum foam integral armor: a new dimension in armor design. Composite Structures, 52 (3-4): 381-395.
  • Gonçalves, D. P., de Melo, F. C. L., Klein, A. N., Al-Qureshi, H. A., 2004. Analysis and investigation of ballistic impact on ceramic/metal composite armour. International Journal of Machine Tools and Manufacture, 44 (2-3): 307-316.
  • Hu, C. J., Lee, P. Y., Chen, J. S., 2002. Ballistic performance and microstructure of modified rolled homogeneous armor steel. Journal of the Chinese Institute of Engineers, 25 (1): 99-107.
  • Jena, P. K., Kumar, K. S., Krishna, V. R., Singh, A. K., Bhat, T. B., 2008. Studies on the role of microstructure on performance of a high strength armour steel’, Engineering Failure Analysis, 15: 1088–1096.
  • Karagöz, Ş., Andren, H. O., 1992. Secondary hardening in high speed steels. Z. f. Metallkunde, 83: 386-394.
  • Karagöz, Ş., Atapek, H., Yılmaz, A., 2008. Araçlarda su verilmiş ve temperlenmiş çeliklerin zırh malzemesi olarak kullanımı ve balistik açıdan mekanik özellikleri. IV. Uluslararası Otomotiv Teknolojileri Kongresi, Bildiriler Kitabı, 579-586.
  • Matsubara H., Osuka, T., Kozasu, I., Tsukada, K., 1972. Optimization of metallurgical factors for production of high strength, high toughness steel plate by controlled rolling. Transactions ISIJ, 12: 435-443.
  • Maweja, K., Stumpf, W., 2008. The design of advanced performance high strength low-carbon martensitic armour steels: Part 1. Mechanical property considerations, Materials Science and Engineering: A, 485 (1-2): 140-153.
  • Mills, K., Davis, J. R., Destefani, J. D., 1987. Fractography. ASM Handbook, Vol. 12, Materials Park, Ohio/USA.
  • Sangoy, L., Meunier, Y.,Pont, G., 1988. Steels for ballistic protection. Israel Journal of Technology, 24: 319-326.
  • Shokrieh, M. M., Javadpour, G. H., 2008. Penetration analysis of a projectile in ceramic composite armor. Composite Structures, 82 (2): 269-276.
  • Sorensen, B. R., Kimsey, K. D., Silsby, G. F., Scheffler, D. R., Sherrick, T. M., de Rosset, W. S., 1991. High velocity penetration of steel targets. International Journal of Impact Engineering, 11 (1): 107-111.
  • U. S. Military Specification, 1990. MIL-A-12560H(MR) -Armor Plate, Steel, Wrought, Homogenous (For Use in Combat-Vehicles and for Ammunition Testing), USA.
  • Verhoeven, J. D., 1975. Fundamentals of physical metallurgy. John Wiley & Sons, NY.