Civa Kadmiyum Tellürüt Kızılötesi Foto Algılayıcıların Performans Parametrelerinin Simülasyonu

Termal görüntülemede, HgCdTe (Civa Kadmiyum Tellürüt) kızılötesi foto algılayıcılar hedefin yansıttığı/yaydığı IR ışımanın algılanması için yaygın olarak kullanılmaktadır. Bunların performansı/kalitesi kullanılan HgCdTe foto algılayıcının malzeme ve cihaz parametrelerine göre değişmektedir. Bu çalışmada, KOCERsim veya MCTsim adı verilen sayısal program geliştirilerek uzun dalga kızılötesi ışıma (LWIR) ve çok uzun dalga kızılötesi ışıma (VLWIR) bantlarındaki p-n tipi HgCdTe kızılötesi sensörün 77 K sıcaklıktaki elektriksel ve fotoelektriksel parametreleri incelenmektedir. KOCERsim programı doğrusal olmayan ve kuplajlı Poisson ve süreklilik denklemlerini çözmektedir. Difüzyon, ışıma, Auger, Shockley-Read Hall (SRH) ve tuzak-destekli tünelleme (TAT) mekanizmaları KOCERsim programına uygun olarak eklenmiştir. Bu mekanizmaların karanlık ve fotoakıma olan etkileri ters öngerilimleme, kesim dalga boyu, elektron/hol yakalanma kesit alanı, ömür süresi, tuzak yoğunluğu ve tuzak enerji seviyesine göre incelenmektedir

Civa Kadmiyum Tellürüt Kızılötesi Foto Algılayıcıların Performans Parametrelerinin Simülasyonu

Keywords:

-,

___

  • Bellotti, E. ve D’orsogna, D. (2006). Numerical Analysis of HgCdTe Simultaneous Two-Color Photovoltaic Infrared Detectors, IEEE Journal of Quantum Electronics, 42(4), 418-426.
  • D’orsogna, D. (2010). Numerical Simulation Models and Stress Measurements BostonUniversity, PhD Thesis. HgCdTe Infrared Detectors HgCdTe,
  • Emelie, P.Y. (2009). HgCdTe Auger-Suppressed Infrared Detectors Under Non-Equilibrium Operation, The University of Michigan, PhD Thesis.
  • Gumenjuk, J.V., Sizov F.F., Ovsyuk V.N., Vasil'ev V.V. ve Esaev D.G., (2001). Charge Transport in HgCdTe-Based n+-p Photodiodes, Semiconductors, 35(7), 835-840.
  • Gumenjuk, J.V. ve Sizov F.F. (1999). Currents in Narrow-Gap Photodiodes, Semiconductor Science and Technology, 14, 1124-1131.
  • Gopal, V., Singh S.K. ve Mehra R.M. (2002). Analysis of Dark Current Contributions in Mercury Cadmium Telluride Junction Diodes, Infrared Physics & Technology, 43, 317-326.
  • Hougen, C.A. (1989). Model for Infrared Absorption and Transmission of Liquid-Phase Epitaxy HgCdTe, Journal of Applied Physics, 66, 3763-3767.
  • Hu, W. D., Chen X. S., Yin F., Ye Z.H., Lin C., Hu X. N., Quan Z. J., Li Z. F. ve Lu W. (2008). Simulation and Design Considerations of Photoresponse for HgCdTe Infrared Photodiodes, Optical and Quantum Electronics, 40, 1255-1260.
  • Ivasiv, Z. F., Sizov F.F. ve Tetyorkin V.V. (1999). Noise Spectra and Dark Current Investigations in n+-p-type Hg1-xCdxTe (x≈0.22) Photodiodes, Semiconductor Physics, Quantum Electronics & Optoelectronics, 2(3), 21-25.
  • Jozwikowski, K., Kopytko M., Rogalski A. and Jozwikowska A. (2010). Enhanced Numerical Analysis of Current-voltage Characteristics of Long Wavelength n-on-p HgCdTe Photodiodes, Journal of Applied Physics, 108, 074519-1-074519-11.
  • Karimi, M., Kalafi M. and Asgari A. (2007). Numerical Optimization of an Extracted HgCdTe IR Photodiodes for 10.6-um Spectral Region Operating at Room Temperature, Microelectronics Journal, 38, 216- 221.
  • Koçer, H. (2011). Numerical Modeling and Optimization of HgCdTe Infared Photodetectors for Thermal Imaging, METU, Ph.D. Thesis.
  • Kramer, K. (1997). Semiconductor Devices: A Simulation Approach. New Jersey/US: Prentice Hall PTR.
  • Mao, D. H. (1998). Optical and Electrical Characterization of Mercury Cadmium Telluride and Performance Simulation of Infared Photodetectors, Stanford University, PhD Thesis.
  • Nemirovsky, Y., Fastow R., Meyassed M. and Unikovsky A. (1991). Trapping Effects in HgCdTe, Journal of Vacuum Science and Technology, B9(3), 1829-1839.
  • Nemirovsky, Y. and Unikovsky A. (1992). Tunneling and 1/f Noise in HgCdTe Photodiodes, Journal of Vacuum Science and Technology B, 10(4), 1602-1610.
  • Niedziela, T. and Ciupa R. (2000). Optimization of Parameters of (Hg,Cd)Te n+-p Photodiodes for 10.6-um Spectral Region Operating at Near-Room Temperatures, Electron Technology, 33(4), 542-547.
  • Polla, D.L. and Jones C.E. (1981). Deep Level Studies of Hg1-xCdxTe. I: Narrow-Band-Gap Space-Charge Spectroscopy, Journal of Applied Physics, 52(8), 5118-5131.
  • Razeghi, M. (2002). Handbook of Infrared Detection Technologies. Washington/US: SPIE.
  • Rogalski, A. (1995). Infrared Photon Detectors. Washington/US: SPIE.
  • Rogalski, A., Adamiec K. and Rutkowski J. (2000). Narrow-Gap Semiconductor Photodiodes. Washington/US: SPIE Press.
  • Rosenfeld, D. and Bahir G. (1992). A Model for The Trap-Assisted Tunneling Mechanism in Diffused n-p and Implanted n+-p HgCdTe Photodiodes, IEEE Transactions on Electron Devices, 39(7), 1638- 1645.
  • Rosbeck, J.P., Star R.E., Price S.L. and Riley K.J. (1982). Background and Temperature Dependent Current-Voltage Characteristics of HgCdTe Photodiodes, Journal of Applied Physics, 53, 6430-6440.
  • Saxena, P.K. (2011). Modeling and Simulation of HgCdTe Based p+–n–n+ LWIR Photodetector, Infrared Physics & Technology, 38, 216-221.
  • Saxena, P.K. and Chakrabarti P. (2009). Computer Modeling of MWIR Single Heterojunction Photodetector Based on Mercury Cadmium Telluride, Infared Physics & Technology, 52, 196-203.
  • Shockley, W. and Read W. T. (1952). Statistics of The Recombinations of Holes and Electrons, Physical Review, 87, 835-842.
  • Summers, C. J. and Darling B. (1986). Computer Modeling of Carrier Transport in (Hg,Cd)Te Photodiodes, Journal of Applied Physics, 59(7), 2457-2466.
Savunma Bilimleri Dergisi-Cover
  • ISSN: 1303-6831
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2002
  • Yayıncı: Milli Savunma Üniversitesi Alparslan Savunma Bilimleri ve Millî Güvenlik Enstitüsü