Biyomedikal Uygulamalar İçin TiN Kaplı Ti6Al4V Alaşımının Mekanik Özelliklerinin Araştırılması

Bu çalışmada, biyomedikal amaçlı en yaygın kullanılan TiN kaplama ve ısıl işlem uygulamalarının Ti6Al4V alaşımının mekanik özelliklere etkisi araştırılmıştır. Literatür kısmında belirtildiği üzere; ısıl işlem ile Ti-6Al-4V alaşımının özelliklerine olumlu etkisi olan sabit parametreler tercih edilmiştir. Ti-6Al-4V alaşımına ısıl işlem uygulanmış ve PVD ile TiN kaplama yapılmıştır. Ti-6Al-4V/TiN ve ısıl işlemli numunelerine üç nokta eğme testleri gerçekleştirilmiştir. Isıl işlem argon koruyucu atmosferinde 735 0C sıcaklıkta 1 saat beklenerek ve tabi soğumaya bırakılarak gerçekleştirilmiştir. TiN kaplama fiziksel buhar çöktürme tekniklerinden (PVD) sıçratma tekniği ile gerçekleştirilmiş olup kaplama kalınlığı ortalama 2 µm’dur. X-ışınları kırınım analizi ile elemental analiz yapılmıştır. Deneysel çalışmalarda Ti-6Al-4V alaşımının elastik modülünün (E) uygulanan işlemlerle değişmediği (105-120 GPa) görülmüştür. Isıl işlem sonrası uygulanan TiN kaplama eğme mukavemetini maksimum seviyeye çıkarmakta iken akma gerilmesi ise TiN kaplanmış ve ısıl işlem sonrası TiN kaplanmış Ti-6Al-4V alaşımı için ise hemen hemen aynı olduğu belirlenmiştir. Ti-6Al-4V alaşımına uygulanan ısıl işlem sonucu yük kapasitesi artmıştır. Sadece TiN kaplama yapıldığında ise bu yük kapasitesinin düştüğü TiN kırılgan olmasıyla açıklanmıştır. Hem ısıl işlem hemde TiN kaplanan numunelerde sadece TiN kaplanmış numunelere göre yük kapasitesi değişmediği saptanmıştır. Üç nokta eğme deney öncesi ve sonrası yüzey morfolojisi için SEM ve Optik mikroskop ile görüntüleme yapılmıştır. Yüzey kaplamsının biyo-filim oluşumuna ve tribolojik özelliklere faydaları bilinmekte olup, mekanik özelliklere olan etkisi tam bilinmemektedir. Bu çalışma ile TiN kaplamanın ve ısıl işlem uygulamasının mekanik özelliklere olan ilgisi belirlenmiştir.

Investigation of Mechanical Properties of TiN-coated Ti6Al4V Alloy for Biomedical Applications

In this study, the effect of the most commonly used TiN coating and heat treatment applications on the mechanical properties of Ti6Al4V alloy was investigated. As stated in the literature section, constant parameters which have positive effects on the properties of Ti-6Al-4V alloy with heat treatment were preferred. Heat treatment was applied on Ti-6Al-4V alloy and TiN coating was done using PVD. Three-point bending tests were performed on Ti-6Al-4V/ TiN and heat treated samples. The heat treatment was carried out in an argon protective atmosphere at a temperature of 735 ° C for 1 hour and then the samples were allowed to cool. The TiN coating was carried out using the technique of splashing from physical vapor deposition techniques (PVD), and the average coating thickness was 2 µm. Elemental analysis was performed using X-ray diffraction analysis. In experimental studies, it was seen that the elastic modulus (E) of Ti-6Al-4V alloy was not changed by the applied processes (105-120 GPa). The TiN coating applied after the heat treatment maximized the bending strength, while the yield stress was almost identical between TiN-AlAl-4V alloy that is TiN coated after going through heat treatment and TiN-AlAl-4V alloy that is only TiN coated. As a result of the heat treatment applied to the Ti-6Al-4V alloy, the load capacity was increased. When TiN coating is applied alone, the decrease in the load capacity can be explained by the fact that TiN is brittle. In both heat treated and TiN coated samples, load capacity was not changed compared to just TiN coated samples. Before and after the three-point bending test, SEM and Optical microscope examinations were performed for evaluating surface morphology. The benefits of surface coating to biofilm formation and tribological properties are known but its effects on mechanical properties are unknown. In this study, the effects of TiN coating and heat treatment application on mechanical properties were determined.

___

  • Makaleler
  • Bischoff U., Freeman M., Smith D., Tuke M., Gregson P. (1994). Wear induced by motion between bone and titanium or cobalt-chrome alloys. J Bone Jt. Surg. Br., 76,713–716. Bolognini, S., Mari, D., Viatte, T. and Benoit, W. (2001). Fracture toughness of coated TiCN-WC-Co cermets with graded composition. Int. J. Refractory Metals and Hard Materials, 19, 285-92. Brien W.W., Salvati E.A., Betts F., Bullough P., Wright T., Rimnac C., Buly R., Garvin K. (1992). Metal levels in cemented total hip arthroplasty: a comparison of well-fixed and loose implants. Clin. Orthop. Relat. Res., 276, 66–74. Chandler H., (1996). Heat Treater’s Guide Practices and Procedures For Nonferrous Alloys, ASM International, ISBN: 087170-565-6. Cui W., Qin W., Duan J., Wang H. (2017). A graded nano-TiN coating on biomedical Ti alloy: Low friction coefficient, good bonding and biocompatibility. Materials Science and Engineering, C71, 520-528. Danışman Ş., Odabas D., Teber M. (2018). The Effect of Coatings on the Wear Behavior of Ti6Al4V Alloy Used in Biomedical Applications. Materials Science and Engineering, 295, 012044, doi:10.1088/1757-899X/295/1/012044. Danışman Ş., Savaş S. (2006). The Effect of Ceramic Coatings on Corrosion and Wear Behaviour. Journal of the Balkan Tribological Association, 12, (1)104-113. Danışman Ş., Savaş S., Işık G., Bendeş O., Özbekler A. (2008) Wear Resistant Hard Ceramic Coatings Used in Biomedical Applications, 4 th National Biomechanics Congress, Erzurum. Gök K., İnal S.. Urtekin L., Gök A.. (2019). Biomechanical performance using finite element analysis of different screw materials in the parallel screw fixation of Salter–Harris Type 4 fractures. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(3). Güven Ş. Y., (2014). Biyouyumluluk ve Biyomalzemelerin Seçimi. Süleyman Demirel Üniversitesi Mühendislik Bilimleri ve Tasarım Dergisi, 2(3), 303-311. Hirakawa K., Stulberg B.N., Wilde A.H., Bauer T.W., Secic M., (1998). Results of 2-stage reimplantation for infected total knee arthroplasty. J. Arthroplast., 13,22–28. Jacobs J.J., Gilbert J.L., Urban R.M. (1998). Current concepts review-corrosion of metal orthopaedic implants, J. Bone Jt. Surg., 80, 268–282. Jang H.W., Lee H.J., Ha J.Y., Kim K.H., Kwon T.Y. (2011).Surface characteristics and osteoblast cell response on TiN-and TiAlN-coated Ti implant. Biomed.Eng. Lett., 1,99–107. Leyens, C. and Peters, M. (2003). Titanium and Titanium Alloys: Fundamentals and Applications. Wiley-VCH, Weinhem. Lombardi Jr A. V.., Mallory T. H., Vaughn B. K., and Drouillard P. (1989). Aseptic loosening in total hip arthroplasty secondary to osteolysis induced by wear debris from titanium-alloy modular femoral heads. Journal of Bone and Joint Surgery, 71,(9) 1337–1342. Maurer A. M., S. Brown A., Payer J. H., Merritt K., and Kawalec J. S. (1993). Reduction of fretting corrosion of Ti-6Al-4V by various surface treatments. Journal of Orthopaedic Research, 11(6) 865–873. McKellop H., Sarmiento A., Schwin C.P., Ebramzadeh E. (1990). In vivo wear of titanium-alloy hip prostheses. J. Bone Jt. Surg. Am., 72, 512. Mezger P. R. and Creugers N. H. J. (1992). Titanium nitride coatings in clinical dentistry. Journal of Dentistry, 20,(6) 342–344. Mori, T., Fukuda, S. and Takemura, Y. (2001). Improvement of mechanical properties of Ti/TiN multilayer film deposited by sputtering. Surface and Coating Technology, 140, 122-7. Muller, D., Cho, Y.R. and Fromm, E. (1993). Measurement of TiN and Al coatings by fracture mechanics tests. Thin Solid Films, 236, 253-6. Namba R.S., Keyak J.H., Kim A.S., Vu L.P., Skinner H.B. (1998). Cementless implant composition and femoral stress: a finite element analysis. Clin. Orthop. Relat. Res., 347,261-267. Probst J., Gbureck U., Thull R. (2001). Binary Nitride and Oxynitride PVD Coatings on Titanium for biomedical Applications. Surface and Coatings Technology, 148, 226-23. Salvati E.A., Betts, F. Doty S.B. (1993). Particulate metallic debris in cemented total hip arthroplast., Clin. Orthop. Relat. Res., 293, 160–173. Sarrafa M., Zalnezhad E., Bushroa A.R., Hamouda A.M.S., Rafieerad A.R., Nasiri-Tabrizi B. (2015). Effect of microstructural evolution on wettability and tribological behavior of TiO2 nanotubular arrays coated on Ti–6Al–4V. Ceramic International, 41, 7952–7962. Shaldach M., Hubmann M., Hardt R., and Weikl A. (1989). Titanium nitride cardiac pacemaker electrodes. Biomedizinische Technik, 34, 185–190. Sin D.-C., Kei H.-L., and Miao X. (2009). Surface coatings for ventricular assist devices. Expert Review of Medical Devices, 6,(1) 51–60. Urtekin L., (2015). Experimental investigation of process parameters for WEDM of Ti-6Al-4V/TiN composites. Science and Engineering of Composite Materials, 22 (6), 685-692. Vadıraj A., Kamaraj M. (2006). Characterization of Fretting Fatigue Damage of PVD TiN Coated Biomedical Titanium Alloys. Surface and Coatings Technology, 200, 4538-4542. Vadıraj A., Kamaraj M. (2007). Effect of Surface Treatments on Fretting Fatigue Damage of Biomedical Titanium Alloys. Tribology International, 40, 82-88. Wisbey A., Gregson P. J., and Tuke M. (1987). Application of PVD TiN coating to Co-Cr-Mo based surgical implants. Biomaterials, 8,(6) 477–480. Yilbas B.S., Sunar M., Qasem Z., Abdul Aleem B.J. and Zainaulabdeen S. (2005). Study into mechanical properties of TiN coating on Ti-6Al-4V alloy through three-point bending tests. Industrial Lubrication and Tribology, 57 (5), 193-196. Yilbas, B.S. and Hashmi, M.S.J. (2000). Laser treatment of Ti-6Al-4V alloy prior to plasma nitriding. Journal of Materials Processing Technology, 103, 304-9.