Ters Misel Sistemi ile L-Aspartik Asit Ekstraksiyonu

Bu çalışmanın amacı, hidrofilik bir amino asit olan L-aspartik asitin ekstraksiyonunu ters misel sistemiyle incelemektir. Son yıllarda, amino asitlerin fermentasyonla üretimi giderek önem kazanmaktadır. Bu amino asitler, sulu çözeltilerinde seyreltik olarak bulunurlar ve üretim ortamlarında fazla bulunan substrat, inorganik tuzlar ve yan ürünlerden ayrılması gerekmektedir. Günümüzde ters misel ekstraksiyonu ile amino asitlerin, üretim ortamından ayrılması üzerine çalışmalar yoğunlaşmıştır. Bu çalışmada, ters misel fazı; yüzey aktif madde olarak, aliquat-336, eş yüzey aktif madde olarak, 1-dekanol ve apolar çözücü olarak izooktan içermektedir. Deneyler 150 rpm karıştırma hızında, 30 oC'da, 60 dakika süre ile eşit hacimde ters misel ve sulu fazlar ile gerçekleştirilmiştir. L-aspartik asit derişimi sıvı kromatografi (HPLC) ile analizlenmiştir. Ekstraksiyon verimi, pH ve aliquat-336 derişiminin artmasıyla ve başlangıç amino asit derişiminin azalmasıyla artmıştır. Maksimum ekstraksiyon verimi (% 68) pH 12'de, yüzey aktif madde derişimi 200 mM'da ve başlangıç amino asit derişimi 5 mM'da elde edilmiştir.

Extraction of L-Aspartic Acid with Reverse Micelle System

The aim of this study is to investigate the extraction L-aspartic acid which is a hydrophobic amino acid with reverse micelle system. Production of amino acids by fermentation has been more important in recent years. These amino acids are obtained in dilute aqueous solutions and have to be separated from excess substrate, inorganic salts and by-products. Recently, separation of amino acids from fermentation media by reverse micelle extraction has received a great deal of attention. In this study, reverse micelle phase includes aliquat-336 as a surfactant, 1-decanol as a co-surfactant and isooctane as an apolar solvent. Experiments were performed at 150 rpm stirring rate, at 30 oC, for 30 min extraction time with equal volumes of reverse micelle and aqueous phases. Concentration of L-aspartic acid was analyzed by liquid chromatography (HPLC). The extraction yield increased with increasing pH and aliquat-336 concentration and with decreasing initial amino acid concentration. Maximum ekstraction yield (68 %) was obtained at pH of 12, surfactant concentration of 200 mM and an initial amino acid concentration of 5 mM.

___

  • Aydoğan, Ö., Bayraktar, E., Mehmetoğlu, Ü., Parlaktuna, M. and Mehmetoğlu, T. 2007. Production of L-aspartic acid by biotransformation and recovery using reverse micelle and gas hydrate methods, Biocatalysis and Biotransformation. 25 (5), 365-372.
  • Boyadzhiev, L. and Atanassova, I. 1991. Recovery of L-lysine from dilute water solutions by Liquid Pertraction, Biotechnol. Bioeng. (38), 1059-1064.
  • Cardoso, M. M., Barradas, M. J., Kroner, K. H. and Crespo, J. G. 1999. Amino acid solubilization in cationic reversed micelles: factors affecting amino acid and water transfer, J. Chem. Technol. Biotechnol. (74), 801-811.
  • Chao, Y.P., Lo, T.E. and Luo, N.S. 2000. Selective Production of L-aspartic acid and l-phenylalanine by coupling reactions of aspartase and aminotransferase in Escherichia coli, Enzyme and Microbial Technology. (27), 19-25.
  • Chibata, I., Tosa, T. and Sato, T. 1974. Immobilized aspartase-containing microbial cells: Preparation and Enzymatic Properties, Applied Microbiology. (27), 878-885.
  • Dövyap, Z., Bayraktar, E. and Mehmetoğlu, Ü. 2006. Amino acid extraction and mass transfer rate in the reverse micelle system, enzyme and Microbial Technology. (38), 557-562.
  • Eyal, A. M. and Bressler, E. 1993. Industrial Separation of carboxylic and amino acids by liquid membranes: Applicability. Process Considerations, and Potential Advantages, Biotechnol Bioeng. (41), 287-295.
  • Fusee, M.C., Swann, W.E. and Calton, G.J. 1981. Immobilization of Escherichia coli Cells Containing aspartase activity with polyurethane and its application for L-aspartic Acid Production. Applied and Environmental Microbiology. (42), 672-676.
  • Garcia, A.A., Bonen, M.R., Vick, J.R., Sadaka, M. and Vuppu, A. 1999. Bioseparation Process Science. Blackwell Science, Inc.
  • Goto, M., Ishikawa, Y., Ono, T., Nakashio, F. andHatton, T.A. 1997. Extraction and activity of chymotrypsin using AOT-DOLPA mixed miceller systems, Biotechnol. Prog. (14), 729-734.
  • Hossain, M. M. 2000. Mass transfer studies of amino acids and dipeptides in AOT-oleyl alcohol solution using a hollow fiber module. Separation and Purification Technology. (189), 71-83.Ichikawa,S., Imai, M. and Shimizu, M. 1992. Solubilizing Water Involved in Protein Extraction Using Reverse Micelles, Biotechnol. Bioeng. (39), 20-26.
  • Kirk, R.E. and Othmer, D.F. 1992. Encyclopedia of Chemical Technology, New York: Wiley. Cilt 2.
  • Krei, G.A. and Hustedt, H. 1992. Extraction of enzymes by reverse micelles, Chem. Eng.Sci. 47 (1), 99-111.
  • Liu, J.G., Xing, J.M., Shen, R., Yang, C.L. and Liu, H.Z. 2004. Reverse micelles extraction of nattokinase from fermentation broth, Biochemical Engineering Journal. (21), 273-278.
  • Luisi, P.L., Bonner F.J., Pelligrini, A., Wiget, P. and Wolf, R. 1979. Micellar solubilization of proteins in aprotic solvents and their spectroscopic characterisation. Helv Chim Acta. (62), 740-753.
  • Nishiki,T., Nakamura,K. and Kato, D. 2000. Forward and backward extraction rates of amino Acid in Reversed Micellar Extraction”. Biochemical Engineering Journal. (4), 189-195.
  • Pamuk, F. 2000. Biyokimya, Gazi Kitabevi, Ankara.
  • Roth, M. 1971. Fluorescence Reaction For Amino Acids, Analytical Chemistry. (43), 880-882.
  • Sato, T., Nishida, Y., Tosa, T. and Chibata, I. 1979. Immobilization of escherichia coli cells containing aspartase activity with κ-carrageenan enzymic Properties and Application for L-aspartic Acid Production. Biochimica et Biophysica Acta. (570), 179-186.
  • Sato, T. and Tosa, T. 1993. Production of L-Aspartic Acid. In: Tanaka A, Tosa T, Kobayashi T, editors. Industrial Application of Immobilized Biocatalysts. Marcel Dekker, Inc New York. 15-24.
  • Thien, M.P. and Hatton, T.A. 1988. Liquid emulsion membranes and their applications in biochemical processing. Separation Science and Technology. 23 (8-9) 819-853.
  • Tosa, T., Sato, T., Mori, T. and Chibata, I. 1974. Basic studies for continuous production of l-aspartic acid by ımmobilized Escherichia coli Cells. Applied Microbiology. (27), 886-889.