Taşıt savrulma dinamiği kontrol sistemlerinde zaman gecikmesi etkisinin zaman gecikmesi gözleyicisi kullanılarak telafi edilmesi

Zaman gecikmesi kontrol sistemleri tasarımında dikkate alınması gereken sistemin performansını azaltan ve en kötü durumda da sistemi kararsız yapan etkenlerden birisidir. Zaman gecikmesi telafisi için literatürde pek çok yöntem önerilmiştir. Bunlardan en yaygın olarak kullanılanı Smith tahmincisidir. Smith tahmincisi kolaylıkla uygulanabilse de tahmincinin kullandığı zaman gecikmesi modeli ile sistemdeki gerçek zaman gecikmesi farklılaştıkça gecikme telafisi performansı düşmektedir. Bu metodun alternatifi olarak zaman gecikmesi gözleyicisi önerilmiş ve literatürde daha önce bilateral teleoperasyon sistemlerine, robotik manipülatörlere ve iletişim ağı tabanlı yürüyüş şekli rehabilitasyon cihazlarına uygulanmıştır. Bu çalışmada ise zaman gecikmesi gözleyicisinin taşıt savrulma dinamiği kontrolüne uygulanması ele alınmıştır. Zaman gecikmesi gözleyicisinin performansı zamanla değişen gecikmeler için çeşitli simülasyon çalışmalarıyla test edilmiş, ayrıca sonuçlar Smith tahmincisiyle karşılaştırılmıştır. 

Compensation of time delay effect in vehicle yaw stability control systems by using communication disturbance observer

Time delay is a control system design factor, which reduces the performance of the system and makes the system unstable in the worst case. Many methods have been proposed in the literature for time delay compensation and the Smith predictor is the most widely used. Although the Smith predictor is easy to implement, the delay compensation performance degrades as the time delay model used by the predictor differs from the actual time delay in the system. Communication disturbance observer has been proposed as an alternative method to the Smith predictor and it has been applied to the bilateral teleoperation systems, robotic manipulators and network-based gait rehabilitation systems. This paper deals with the application of communication disturbance observer to the vehicle yaw stability control. The performance of communication disturbance observer is tested for time varying delays by using several simulations and the results are compared with the Smith predictor results.

___

  • Smith OJM. “A controller to overcome dead time”. ISA Journal, 6(2), 28-33, 1959.
  • Rao AS, Chidambaram M. “Enhanced Smith predictor for unstable processes with time delay”. Industrial & Engineering Chemistry Research, 44(22), 8291-8299, 2004.
  • Normey-Rico JE, Camacho EF. “Unified approach for robust dead-time compensator design”. Journal of Process Control, 19(1), 38-47, 2009.
  • Emirler MT, Aksun Güvenç B, Güvenç L. “Communication disturbance observer approach to control of integral plant with time delay”. IEEE Asian Control Conference (ASCC), İstanbul, Turkey, 23–26 June 2008.
  • Natori K, Tsuji T, Ohnishi K, Hace A, Jezernik K. “Robust bilateral control with internet communication”. IEEE Industrial Electronics Society Conference (IECON), Busan, South Korea, 2–6 November 2004.
  • Natori K, Ohnishi K. “A design method of communication disturbance observer for time-delay compensation, taking the dynamic property of network disturbance into account”. IEEE Transactions on Industrial Electronics, 55(5), 2152-2168, 2008.
  • Natori K, Oboe R, Ohnishi K. “Stability analysis and practical design procedure of time delayed control systems with communication disturbance observer”. IEEE Transactions on Industrial Informatics, 4(3), 185-197, 2008.
  • Zhang W, Tomizuka M. “Compensation of time delay in a network-based gait rehabilitation system with a discrete-time communication disturbance observer”. IFAC Proceedings Volumes, 46(5), 555-562, 2013.
  • Zhang W, Tomizuka M, Wei Y-H, Leng Q, Han S, Mok AK. “Robust time delay compensation in a wireless motion control system with double disturbance observers”. IEEE American Control Conference (ACC), Chicago, IL, USA, 1-3 July 2015.
  • Zhang W, Tomizuka M, Wu P, Wei Y-H, Leng Q, Han S, Mok AK. “A double disturbance observer design for compensation of unknown time delay in a wireless motion control system”. IEEE Transactions on Control Systems Technology, 26(2), 675-683, 2018.
  • Zeinaly Z, Ramezani A, Ozgoli S. “Design and implementation of a modified communication disturbance observer for teleoperation systems”. Turkish Journal of Electrical Engineering and Computer Sciences, 25(2), 1522-1540, 2017.
  • Hrovat D, Sun J. “Models and control methodologies for IC engine idle speed control design”. Control Engineering Practice, 5(8), 1093-1100, 1997.
  • Jankovic M, Kolmanovsky I. Developments in Control of Time-delay Systems for Automotive Powertrain Applications. Editors: Balachandran B, Kalmar-Nagy T, Gilsinn DE. Delay Differential Equations: Recent Advances and New Directions, 55–90, New York, NY, USA, Springer Science+Business Media, 2009.
  • Kang E, Hong S, Sunwoo M. “Idle speed controller based on active disturbance rejection control in diesel engines”. International Journal of Automotive Technology, 17(6), 937-945, 2016.
  • Baumann J, Torkzadeh DD, Ramstein A, Kiencke U, Schlegl T. “Model-based predictive anti-jerk control”. Control Engineering Practice, 14(3), 259-266, 2006.
  • Güvenç L, Uygan İMC, Kahraman K, Karaahmetoğlu R, Altay İ, Şentürk M, Emirler MT, Hartavi Karcı AE, Aksun Güvenç B, Altuğ E, Turan MC, Taş ÖŞ, Bozkurt E, Özgüner Ü, Redmill K, Kurt A, Efendioğlu B. “Cooperative adaptive cruise control implementation of team Mekar at the Grand Cooperative Driving Challenge”. IEEE Transactions on Intelligent Transportation Systems, 13(3), 1062-1074, 2012.
  • Öncü S, Van de Wouw N, Nijmeijer H. “Cooperative adaptive cruise control: Tradeoffs between control and network specifications”. IEEE International Conference on Intelligent Transportation Systems (ITSC), Washington, DC, USA, 5–7 October 2011.
  • Latrach C, El Hajjaji A, Rabhi A, Kchaou M. “Vehicle dynamics decentralized networked control”. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), İstanbul, Turkey, 2–5 August 2015.
  • Emirler MT, Aksun Güvenç B, Güvenç L. “Zaman gecikmesi gözleyicisinin taşıt savrulma dinamiği kontrolüne uygulanması”. Otomatik Kontrol Türk Milli Komitesi Ulusal Toplantısı (TOK), Yıldız Teknik Üniversitesi, İstanbul, Türkiye, 21-23 Eylül 2017.
  • Ohnishi K. “A new servo method in mechatronics”. Trans. Jpn. Soc. Elect. Eng., 107, 1093-1100, 1987.
  • Umeno H, Hori Y. “Robust speed control of DC servomotors using modern two degrees-of-freedom controller design”. IEEE Transactions on Industrial Electronics, 38(5), 363-368, 1991.
  • Güvenç L, Aksun Güvenç B, Demirel B, Emirler MT. Control of Mechatronic Systems. 1st ed. London, UK, The IET, 2017.
  • Aksun Güvenç, B, Güvenç L, Karaman S. “Robust yaw stability controller design and hardware-in-the-loop testing for a road vehicle”. IEEE Transactions on Vehicular Technology, 58(2), 555-571, 2009.
  • Emirler MT, Kahraman K, Şentürk M, Acar OU, Aksun Güvenç B, Güvenç L, Efendioğlu B. “Lateral stability control of fully electric vehicles”. International Journal of Automotive Technology, 16(2), 317-328, 2015.
  • Ackermann J, Blue P, Bünte T, Güvenç L, Kaesbauer D, Kordt M, Muhler M, Odenthal D. Robust Control: The Parameter Space Approach. 2nd ed. London, UK, Springer-Verlag, 2002.
  • Emirler MT. Advanced Control Systems for Ground Vehicles. PhD Thesis, İstanbul Technical University, İstanbul, Turkey, 2015.
  • Skogestad S, Postlethwaite I. Multivariable Feedback Control: Analysis and Design. 2nd ed. New York, Wiley, 2005.