Otobüs ağlarındaki sefer sıklıklarının armoni araştırması algoritması ile optimizasyonu: Mandl test ağı üzerine bir uygulama

Gelişmekte olan ülkelerde kentiçi toplu taşıma sistemleri arasında en yaygın tür olan otobüs taşımacılığının verimliliğini arttırmaya yönelik çalışmalar son yıllarda artmaktadır. Otobüs sitemlerinin performansının ele alındığı birçok çalışmada, kullanıcı ve işletmeci faydalarını eniyileyen yaklaşımlar üzerinde durulmaktadır. Bu çalışmada, kentiçi otobüs ağlarındaki sefer sıklıklarını eniyileyen iki-seviyeli bir simülasyon/optimizasyon modeli geliştirilmektedir. Üst seviyede, işletmeci ve kullanıcı maliyetlerini temsil eden bir amaç fonksiyonunun çözümü için sezgisel Armoni Araştırması (AA) optimizasyon tekniği tabanlı bir model önerilmektedir. Alt seviyede ise talebin toplu taşıma ağına dağılımını temsil eden toplu taşıma ataması problemi çözülmektedir. Önerilen modelde, aktarma bekleme sürelerinin kesin hesabı için zaman çizelgesi tabanlı toplu taşıma ataması yaklaşımı kullanılmakta ve toplu taşıma ataması problemi logit tabanlı bir modele dayalı olarak VISUM yazılımı ile çözülmektedir. Geliştirilen model, toplu taşıma ağ tasarımı çalışmalarında yaygın olarak kullanılan bir test ağına uygulanmıştır. Sonuçlar, AA tabanlı modelin sefer sıklığı optimizasyonu probleminin çözümünde etkin olarak kullanılabileceğini ortaya koymuştur.

Optimization of service frequencies in bus networks with harmony search algorithm: An application on Mandl’s test network

In developing countries, efforts to increase the efficiency of bus transportation, which is the most common type of urban public transport systems, have been increasing in recent years. Many studies addressing the performance of bus systems focus on approaches to optimizing user and operator benefits. In this study, a bi-level simulation/optimization model is developed to optimize service frequencies in urban bus networks. At the upper level, a meta-heuristic Harmony Search (HS) optimization technique based model is proposed for solving an objective function that represents operator and user costs. At the lower level, the transit assignment problem, which represents the distribution of demand over the transit network, is solved. In the proposed model, a time-table based transit assignment approach is used for the exact calculation of transfer wait times, and the transit assignment problem is solved using VISUM software based on a logit-based choice model. The developed model has been applied to a test network that is widely used in transit network design studies. The results show that the HS based model can be used effectively to solve the service frequency optimization problem.

___

  • IEA. Transport, Energy and CO2: Moving Towards Sustainability. Paris, France, International Energy Agency, 2009.
  • Nesheli MM, Ceder A, Ghavamirad F, Thacker S. “Environmental Impacts of Public Transport Systems Using Real-Time Control Method”. Transportation Research Part D, 51, 216-226, 2017.
  • Behrens A, Egenhofer C. Rethinking European Climate Change Policy. Editors: Birchfield VL, Duffield JS. Toward a Common European Union Energy Policy. 217-234, New York, USA, Palgrave Macmillan Press, 2011.
  • Potter S, Transport >Energy and Emissions: Urban Public Transport. Editors: Hensher DA, Button KJ. Handbook of Transport and the Environment. 247-262, Amsterdam, Netherlands, Elsevier Press, 2003.
  • Pucher J, Korattyswaroopam N. “The crisis of public transport in India: Overwhelming needs but limited resources”. Journal of Public Transportation, 7(4), 1-20, 2004.
  • Mashiri MAM, Moeketsi PN, Baloyi V. “Increasing public transport market share in South Africa: The options”. International Conference Series on Competition and Ownership in Land Passenger Transport, Cape Town, South Africa, 19-23 September1999.
  • Finn B, Mulley C. “Urban Bus services in developing countries and countries in transition: a framework for regulatory and ınstitutional developments”. Journal of Public Transportation, 14(4), 89-107, 2011.
  • British Youth Council. “Public Transport & Young People İn Suffolk: Youth Parliament Report”. London, England, 2012.
  • Texas Transportation Institute. “Transit Capacity and Quality of Service Manual-Part 2”. Texas, USA, 1999.
  • Gulhan G, Ceylan H, Baskan O, Ceylan, H. “Using potential accessibility measure for urban public transportation planning: A case study of Denizli, Turkey”. Promet Traffic & Transportation, 26(2), 129-137, 2013.
  • Verbas İÖ, Mahmassani HS. “Exploring trade-offs in frequency allocation in a transit network using bus route patterns: Methodology and application to large-scale urban systems”. Transportation Research Part B, 81(2), 577–595, 2015.
  • Scheele S. “A supply model for public transit services”. Transportation Research Part B, 14(1-2), 133-146, 1980.
  • Furth PG, Wilson NHM. “Setting frequencies on bus routes: theory and practice”. Transportation Research Record, 818, 1-7, 1981.
  • Lampkin W, Saalmans PD. “The design of routes, service frequencies and schedules for a municipal bus undertaking: a case study”. Operational Research Society, 18(4), 375-397, 1967.
  • Rea JC. “Designing urban transit systems: an approach to the route technology selection problem”. 51st Annual Meeting of the Highway Research Board, Washington, USA, 1972.
  • Silman LA, Barzily Z, Passy U. “Planning the route system for urban busses”. Computers & Operations Research, 1(2), 201-211, 1974.
  • Dubois D, Bel G, Llibre M. “A set of methods in transportation network synthesis and analysis”. The Journal of the Operational Research Society, 30(9), 797-808, 1979.
  • Baaj MH, Mahmassani HS. “An aI-based approach for transit route system planning and design”. Journal of Advanced Transportation, 25(2), 187-209. 1991.
  • Shih M, Mahmassani HS. “A Design Methodology for Bus Transit Networks with Coordinated Operations”. Center for Transportation Research, University of Texas at Austin, Texas, USA, Research Report, 60016-1, 1994.
  • Chakroborty P, Dwivedi T. “Optimal route network design for transit system using genetic algorithms”. Engineering Optimization, 34(1), 83-100, 2002.
  • Kidwai FA, Marwah BR, Deb K, Karim MR. “A genetic algorithm based bus scheduling model for transit network”. Proceedings of the Eastern Asia Society for Transportation Studies, 5, 477-489, 2005.
  • Afandizadeh S, Khaksar H, Kalantari N. “Bus fleet optimization using genetic algorithm a case study of Mashhad”. International Journal of Civil Engineering, 11(1), 43-52. 2013.
  • Mumford CL. “New heuristic and evolutionary operators for the multi-objective urban transit routing problem”. IEEE Congress on Evolutionary Computation, Cancún, México, 20-23 June 2013
  • Nikolic M, Teodorovic D. “A simultaneous transit network design and frequency settings: computing with bees”. Expert Systems with Applications, 41(16), 7200-7209, 2014.
  • Gunby H, Gustavsen S. A Combined Swarm System for the Urban Transit Routing Problem. Msc Thesis, Norwegian University of Science and Technology, Department of Computer and Information Science, Oslo, Norway, 2015.
  • Doğan G, Özuysal M. “Toplu ulaşımda bekleme süresini etkileyen faktörlerin incelenmesi: güvenilirlik, yolcu bilgilendirme sistemi ve fiziksel koşullar”. İMO Teknik Dergi, 481, 927-7954, 2017.
  • Özuysal M, Çalışkanelli SP, Tanyel S. “Otobüs duraklarındaki yolcu iniş-biniş zamanları üzerine bir tartışma”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(6), 460-467, 2016.
  • PTV Group. “PTV Visum FAQs, COM & Add-In”. http://vision-traffic.ptvgroup.com/en-uk/training-support/support/ptv-visum/faqs/ (28.01.2018).
  • Mandl CE. “Evaluation and optimization of the urban public transportation networks”. European Journal of the Operational Research, 5(6), 396-404, 1979.
  • PTV Group. “VISUM-Fundamentals”. PTV Traffic Mobility Logistics, Karlsruhe, Germany, 2011.
  • Erol D, Ceylan H. “Toplu taşımada minibüsten otobüse geçişin konfor ve çevre açısından değerlendirilmesi”. 11. Ulaştırma Kongresi, İstanbul, Türkiye, 27-29 Mayıs, 2015.
  • Geem ZW, Kim JH, Loganathan GV. “A new heuristic optimization algorithm: harmony search”. Simulation, 76(2), 60-68, 2001.
  • Geem ZW, Lee KS, Park Y. “Application of harmony search to vehicle routing”. American Journal of Applied Sciences, 2(12), 1552-1557, 2005.
  • Ceylan H, Ceylan H. “A hybrid harmony search and TRANSYT hill climbing algorithm for signalized stochastic equilibrium transportation networks”. Transportation Research Part C, 25, 152-167, 2012.
  • Ceylan H, Ceylan H. “Şehiriçi karayolu ağlarının sezgisel harmoni araştırması optimizasyon yöntemi ile ayrık tasarımı”. Teknik Dergi, 24(1), 6211-6231, 2013.
  • Ceylan H, Ceylan H. Harmony Search Algorithm for Transport Energy Demand Modeling. Editor: Geem ZW. Music-Inspired Harmony Search Algorithm, Studies in Computational Intelligence, 163-172, Berlin, Heidelberg, Springer, 2009.
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1300-7009
  • Başlangıç: 1995
  • Yayıncı: PAMUKKALE ÜNİVERSİTESİ