Ni3Al partikülleri ile pekiştirilmiş bronz matrisli kompozitlerin kuru sürtünme ve aşınma davranışları

Ni3Al partikülleri ile pekiştirilmiş bronz esaslı kompozit klasik toz metalurjisi (TM) tekniği ile üretilmiştir. Pekiştirici olarak kullanılan partiküller döküm Ni3Al alaşımının bilyeli değirmende öğütülmesiyle üretilmiştir. Bronz alaşımı bileşenlerinin tozları ve Ni3Al (ağ. %1, 75-100mm partikül boyutunda) karıştırılmış, eksenel olarak sıkıştırılmış ve sinterlenerek kompozit malzeme elde edilmiştir. Kompozit ışık mikroskobu ve taramalı elektron mikroskobu kullanılarak karakterize edilmiştir. Basma mukavemetleri ve sertlikler belirlenmiştir. Kompozitin ve pekiştirilmemiş bronzun tribolojik özellikleri disk üzerinde pim geometrisinde belirlenmiş ve sonuçlar geleneksel fenolik reçine ile bağlanan fren balatası ile karşılaştırılmıştır. Sonuçlar TM bronzun kompozitten daha mukavemetli olduğunu göstermiştir. Kompozitin sertliği TM bronzdan daha yüksektir. Sürtünme ve aşınma testleri kompozitin aşınma direncinin ve sürtünme katsayısının geleneksel balatadan daha yüksek olduğunu açığa çıkarmıştır.

Dry sliding friction and wear behaviours of bronze matrix composites reinforced with Ni3Al particles

The bronze based composite reinforced with Ni3Al particles was produced by classical powder metallurgy (PM) technique. Particles used as reinforcement were produced via ball milling of Ni3Al cast alloy. The powders of constituents of bronze and Ni3Al powder (1%wt.75-100mm particle in size) were mixed, compacted axially and sintered. The composite was characterized using light microscopy and scanning electron microscopy. The compression strength and hardness of composites were determined. The tribological properties of composite and unreinforced bronze were determined at pin-on-disc geometry and results were compared with conventional phenolic resin bonded brake lining. The results revealed that PM bronze has higher strength than composite. The hardness of composite is higher than PM bronze. The sliding and wear tests revealed that the wear resistance and coefficient of friction of composite are higher than conventional brake lining.

___

  • Mohanty S, Chugh YP. “Devolopment of fly ash-based automotive brake lining”. Tribology International, 40(7), 1217-1224, 2007.
  • Kukutschova J, Roubicek V, Maslan M, Jancik D, Slovak V, Malachova K, Pavlickova Z, Filip P. “Wear performance and wear debris of semimetallic automative brake materials”. Wear, 268(1-2), 86-93, 2010.
  • Sellami A, Kchaou M, Elleuch R, Cristol AL, Desplanques Y. “Study of the interaction between microstructure, mechanical and tribo-performance of a commercial brake lining material”. Material and Design, 59, 84-93, 2014.
  • Mutlu I, Eldogan O, Findik F. “Tribological properties of some phenolic composites suggested for automotive brakes”. Tribology International, 39(4), 317-325, 2006.
  • Boz M. Kurt A. “Toz metal fren balata malzemelerinin sürtünme-aşınma performansı üzerine Çinkonun etkisi”. Gazi Universitesi Muhendislik-Mimarlık Fakültesi Dergisi, 21(1), 115-121, 2006.
  • Kumar M, Bijwe J. “Composite friction metarials based on metallic fillers: Sensivity of m to operating variables”. Tribology International, 44(2), 106-113, 2011.
  • Eriksson M, Jacobson S. “Tribological surfaces of organic brake pads”. Tribology International, 33(12), 817-827, 2000.
  • Boz M, Kurt A. “The effect of Al2O3 on the friction performance of automative brake friction materials”. Tribology International, 40(7), 1161-1169, 2007.
  • Kurt A. Boz M. “Wear behavior of organic asbestos based and bronze based powder metal brake linings”. Materials and Design, 26(8), 717-721, 2005.
  • Hassan AM, Alrashdan A, Hayajneh MT, Mayyas AT. “Wear behavior of Al-Mg-Cu-based composites containing SiC particles”. Tribology International, 42(8), 1230-1238, 2009.
  • Gultekin D, Uysal M, Aslan S, Alaf M. Guler MO, Akbulut H. “The effects of applied load on the coefficient of friction in Cu-MMC brake pad/Al-SiCp MMC brake disc system” Wear, 270(1-2), 73-82, 2010.
  • Jia JH, Chen J, Zhou H, Wang J, Zhou H. “Friction and wear properties of bronze-graphite composite under water lubrication”. Tribology International, 37(5), 423-429, 2004.
  • Jang H, Ko K, Kim SJ, Basch RH, Fash JW. “The effect of metal fibers on the friction performance of automative brake friction materials”. Wear, 256(3-4), 406-414, 2004.
  • Ho SC, Lin JHC, Ju CP. “Effect of fiber addition on mechanical and tribological properties of a copper/phenolic-based friction material”. Wear, 258(5-6), 861-869, 2005.
  • Johnson ML, Mikkola DE. “Cavitation erosion and abrasive wear of Ni3Al alloys”.Intermetallics, 3(5), 389-396, 1995.
  • Zhu S, Bi Q, Yang J, Liu W, Xue Q. “Effect of particle size on tribological behavior of Ni3Al matrix high temperature self-lubricating composites”. Tribology International, 44(12), 1800-1809, 2011.
  • Yu Y, Zhou J, Chen J, Zhou H, Guo C, Guo B. “Preparation, microstructure and tribological properties of Ni3Al intermetallic compound coating by laser cladding”. Intermetallics, 18(5), 871-876, 2010.
  • Celikyurek I, Korpe NO, Olcer T. Gurler R. “Microstructure, properties and wear behaviors of (Ni3Al)p reinforced Cu matrix composites”. Journal of Materials Science and Technology, 27(10), 937-943, 2011.