Mikro boyutta pH temelli potansiyometrik glikoz biyosensör

Günümüzdeki bilimsel ve teknik ilerlemeler, biyosensör teknolojisinde önemli gelişmelere yol açarak biyosensörlerin gıda teknolojileri, çevre, farmasi ve klinik teşhis, biyokimya, analitik kimya gibi alanlarda yaygın olarak kullanılmasına neden olmuştur. Potansiyometrik biyosensörlerin hazırlanmasında kullanılan iyon-seçici sensör teknolojisindeki gelişmeler ve sensör materyallerin sayılarının artması, yeni tip potansiyometrik biyosensörlerin geliştirilmesini de hızlandırmıştır. Nitekim, bu çalışmada, kompozit pH sensörüne dayalı yeni bir mikro boyutlu potansiyometrik glikoz biyosensörünün geliştirilmesi ele alınmıştır. Glikoz oksidaz, biyotanıma elemanı olarak kompozit tabaka üzerinde immobilize edildi. Kompozit pH algılama esaslı glikoz biyosensör matriksinin yüzeyi ilk olarak elektrokimyasal tanımlama için dönüşümlü voltametri ve elektrokimyasal impedans spektroskopisi kullanılarak incelendi. Yüksek elektron transfer hızı, biyosensörün kararlı bir tepki davranışına sahip olduğunu ve glikozun saptanması için uygun bir potansiyometrik sensör olduğunu göstermektedir. Glikozun potansiyometrik tespiti için 2x10-5 mol/L saptama sınırı ile 5x10-5 ila 1x10-1 mol/ L konsantrasyon aralığında lineer bir cevap elde edildi. Biyosensör hızlı bir tepki süresi (10 s) gösterdi, iyi bir kararlılığa ve uzun bir ömre sahipti.

Micro-Sized glucose biosensor based on composite pH sensor

Today's scientific and technical advances have led to significant advances in biosensor technology, leading to widespread use of biosensors in areas such as food technology, the environment, pharmaceuticals and clinical diagnostics, biochemistry, and analytical chemistry. Improvements in the ion-selective sensor technology used in the preparation of potentiometric biosensors and the increase in the number of sensor materials have also accelerated the development of new types of potentiometric biosensors. Thus, in this study, information is given on the development of a new micro sized potentiometric glucose biosensor based on composite pH sensor. Glucose oxidase was immobilized on the composite layer as the biorecognition element. The surface of glucose biosensor based composite pH sensing matrices was first examined for electrochemical elucidation by using cyclic voltammetry and electrochemical impedance spectroscopy. The rate of electron transfer resulted in a stable response behavior of the biosensor and made it a suitable potentiometric sensor for detection of glucose. A linear response in concentration range from 5x10-5 to 1x10-1 mol/L was obtained with a detection limit of 2x10-5 mol/L for the potentiometric detection of glucose. The biosensor exhibited a fast response time (10 s), had good stability, and an extended lifetime.

___

  • Liu Y, Yu T. “Polymers and enzyme biosensors”. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry & Physics, 37( 3), 459-500, 1997.
  • Ófagain C. “Enzyme stabilization-recent experimental progress”. Enzyme and Microbial Technology, 33(2-3) 137-149, 2003.
  • Ófagain C, Ruzgas T, Gorton L, Csoregi E, Ardila GB, Sakharov IU, Gazaryan, I.G. “Biosensors based on novel peroxidases with improved properties in direct and mediated electron transfer”. Biosensors and Bioelectronics, 15(9-10), 491- 497, 2000.
  • Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Ronco JJ. “Intensive versus conventional glucose control in critically ill patients”. The New England Journal of Medicine - Journals, 360(13),1283-1297, 2009.
  • Wiener R, Wiener D, Larson R. “Benefits and risks of tight glucose control in critically ill adults: a meta-analysis”. Journal of the American Medical Association, 300(8), 933- 944, 2008.
  • Krinsley J, Grover A. “Severe hypoglycemia in critically ill: risk and outcomes”. The Journal of Critical Care Medicine, 36(4), 1390-1391, 2008.
  • Anger K, Szumita P. “Barriers to glucose control in the intensive care unit”. Pharmacotherapy, 26(2), 214-228, 2006.
  • Vriesendorp T, Devries J, Holleman F, Dzoljic M, Hoekstra J. “The use of two continuous glucose sensors during and after surgery”. Diabetes Technology and Therapeutics- Journals, 7(2), 315-322, 2005.
  • Kovatchev B, Anderson S, Heinemann L, Clarke W. “Comparison of the numerical and clinical accuracy of four continuous glucose monitors”. Diabetes Care Journal, 31(6), 1160 -1164, 2008.
  • Koschinsky T, Heinemann L. “Sensors for Glucose monitoring: technical and clinical aspects”. Diabetes/Metabolism Research and Reviews, 17(2), 113-123, 2001.
  • Oliver NS, Toumazou C, Cass AEG, Johnston DG. “Glucose sensors: a review of current and emerging technology”. Diabetic Medicine-Journals, 26(3),197-210, 2009.
  • Lin Y, Lu F, Tu Y, Ren Z. "Glucose biosensors based on carbon nanotube nanoelectrode ensembles”. Nano Letters, 4(2), 191-195, 2004.
  • Lindgren A, Ruzgas T, Gorton L, Csoregi E, Ardila GB, Sakharov IU, Gazaryan IG. “Biosensors based on novel peroxidases with improved properties in direct and mediated electron transfer”. Biosensors and Bioelectronics, 15(9-10), 491-497, 2000.
  • Tınkılıc N, Cubuk O, Isildak I. “Glucose and urea biosensors based on all solid-state contact PVC-NH2 membrane electrodes”. Analytica Chimica Acta, 452(1), 24-29, 2002.
  • Pörksen JR, Isildak I, Andac M, Yolcu M, Kahlert H, Scholz F, Behnert J. “Application of a new pH-sensitive electrode as a detector in flow ınjection potentiometry”. Electroanalysis, 17(12), 1085-1090, 2005.
  • Rekha K, Gouda MD, Thakur MS, Karanth NG. “Ascorbate oxidase based amperometric biosensor for organophosphorous pesticide monitoring”. Biosensors and Bioelectronic, 15(9-10),499-502, 2000.
  • Updike SJ, Gilligan BJ, Shults MC, Rhodes RK. “A subcutaneous glucose sensor with improved longevity, dynamic range, and stability of calibration”. Diabetes Care, 23(2), 208-214, 2000.
  • Aussedat B, Thome-Duret V, Reach G, Lemmonier F, Klein JC, Hu L, Wilson GS. “A user-friendly method for calibrating a subcutaneous glucose sensor-based hypoglycemic alarm”. Biosensors and Bioelectronics, 12(11), 1061-1071, 1997.
  • Lenigk R, Lam E, Lai A, Wang H, Han Y, Carlier P, Renneberg R. “Enzyme biosensor for studying therapeutics of Alzheimer’s disease”. Biosensors and Bioelectronics, 15(9-10), 541-547, 2000.
  • Ramsay G, Wolpert SM. “Utility of wiring nitrate reductase by alkylpyrroleviologen-based redox polymers for electrochemical biosensor and bioreactor applications”. Analytical Chemistry, 71(2), 504-506, 1999.
  • Bozkurter Cil AT, Bicakci U, Isildak I, Ariturk, E. “pH and antioxidant measurements in rats with testicular torsion and their correlation with viability”. Journal of Pediatric Surgery, 51(10), 1716-1720, 2016.
  • Yolcu, M. Dere, N. “All-Solid-State Potentiometric Cu(II)-Selective Sensor Based on Ion Imprinted Methacrylamide Polymer”. Electroanalysis, 30(6), 1-9, 2018.