Kolajen hidrolizat/karboksimetil selüloz filmlerinin mekanik ve bariyer özelliklerinin SiO2 nanoparçacıkları kullanımı ile geliştirilmesi

Küresel bir sorun olan kirlilik ve biyolojik olarak parçalanmayan plastik ambalaj filmlerinin artan kullanımı çevresel kaygılara neden olmuştur. Dolayısıyla, biyolojik olarak bozunabilir filmler gibi doğal polimer materyalleri kullanma eğilimi artmıştır. Bu makale, paketleme/kaplama uygulamaları için yeni kolajen hidrolizat/karboksimetil selüloz/nano-SiO2 filmlerini hazırlamayı ve karakterize etmeyi amaçlamaktadır. Sonuçlar, filmlere nano-SiO2 katılımının %1'den %4'e arttırılmasıyla, kalınlık ve çekme mukavemetinde belirgin bir artışa (p<0.05) neden olduğunu, ancak kopma uzamasını önemli ölçüde azalttığını göstermektedir. Nano-SiO2, filmlerin su buharı geçirgenliği ve suda çözünürlük değerlerini büyük ölçüde düşürmüştür. Ayrıca, filmlerdeki nano-SiO2 oranındaki artışlar şeffaflık değerlerini arttırmış, ultraviyole ve görünür aralıktaki ışık geçirgenliğinde azalma sağlamıştır. Bu çalışma, nano-SiO2'nin kolajen hidrolizat/karboksimetil selüloz filmlerine ilavesinin, üretilen filmin özellikleri üzerinde önemli etkiler verdiğini göstermektedir. Kolajen hidrolizatı/karboksimetil selüloz filmlerinin özelliklerinin geliştirilmesi, filmlerin kaplama/ambalaj amaçlı kullanım potansiyelini arttıracaktır.

Development of the mechanical and barrier properties of collagen hydrolysate/carboxymethyl cellulose films by using SiO2 nanoparticles

Pollution is a global problem and the increased use non-biodegradable plastic packaging films have caused environmental concerns. Thus, there is a tendency to use natural polymer materials, such as biodegradable films. This paper aims to prepare and characterize novel collagen hydrolysate/carboxymethyl cellulose/nano-SiO2 films for packaging/coating applications. The results indicate that the incorporation of nano-SiO2 in films from 1% to 4% caused significant increase (p<0.05) in thickness and tensile strength but significantly decreased the elongation at break. Nano-SiO2 drastically reduced the water vapor permeability and water solubility values of films. Furthermore, the increments in nano-SiO2 proportion in films increased the values of transparency and provided a reduction in the light transmission in the ultraviolet and visible range. This study demonstrates that nano-SiO2 addition to collagen hydrolysate/carboxymethyl cellulose films gives significantly effects on properties of film produced. The enhancement of film properties shows the potential for using collagen hydrolysate/carboxymethyl cellulose films for coating/packaging purposes.

___

  • Jiang H, Liu J, Han W. “The status and developments of leather solid waste treatment: A mini-review”. Waste Management & Research, 34(5), 399-408, 2016.
  • Prokein M, Renner M, Weidner E, Heinen T. “Low-chromium- and low‑sulphate emission leather tanning intensified by compressed carbon dioxide”. Clean Technologies and Environmental Policy, 19(10), 2455-2465, 2017.
  • Gil CSB, Gil VSB, Carvalho SM, Silva GR, Magalhaes JH, Orefice RL, Mansur A, Mansur HS, Patricio PSO, Oliveria LCA. “Recycled collagen films as biomaterials for controlled drug delivery”. New Journal of Chemistry, 40(10), 8502-8510, 2016.
  • Kupec J, Dvorackova M, Rudlova S, Ruzicka J, Kolomaznik K. “Deproteination of chrome waste by washing and enzymatic hydrolysis”. Journal of the American Leather Chemists Association, 97(9), 349-354, 2002.
  • Lipsett AV. “Offal Blue”. Journal of the American Leather Chemists Association, 77(6), 291-301, 1982.
  • Ocak B. “Complex coacervation of collagen hydrolysate extracted from leather solid wastes and chitosan for controlled release of lavender oil”. Journal of Environmental Management, 100, 22-28, 2012.
  • Zhou J, Xu T, Wang X, Liu C, Liao X, Huang X, Shi B. “A low-cost and water resistant biomass adhesive derived from the hydrolysate of leather waste”. RSC Advances, 7(7), 4024-4029, 2017.
  • Ocak B, Aslan A, Gulumser G. “Utilization of chromium-tanned leather solid wastes in microencapsulation”. Journal of the American Leather Chemists Association, 106(7), 232-238, 2011.
  • Kocurek P, Kolomaznik K, Barinova M, Hendrych J. “Total control of chromium in tanneries- thermal decomposition of filtration cake from enzymatic hydrolysis of chrome shavings”. Waste Management & Research, 35(4), 444-449, 2017.
  • Cabeza LF, Taylor MM, DiMaio GL, Brown EM, Marmer WN, Carrio R, Celma PJ, Cot J. “Processing of leather waste: pilot scale studies on chrome shavings. Isolation of potentially valuable protein products and chromium”. Waste Management, 18(3), 211-218, 1998.
  • Ocak B. “Film-forming ability of collagen hydrolysate extracted from leather solid wastes with chitosan”. Environmental Science and Pollution Research, 25(5), 4643-4655, 2018.
  • Castiello D, Chiellini E, Cinelli P, D’Antone S, Puccini M, Salvadori M, Seggiani M. “Polyethylene-collagen hydrolizate thermoplastic blends: Thermal and mechanical properties”. Journal of Applied Polymer Science, 114(6), 3827-3834, 2009.
  • Haroun AA. “Preparation and characterization of biodegradable thermoplastic films based on collagen hydrolyzate”. Journal of Applied Polymer Science, 115(6), 3230-3237, 2010.
  • Hazirah MASPN, Isa MIN, Sarbon NM. “Effect of xanthan gum on the physical and mechanical properties of gelatin-carboxymethyl cellulose film blends”. Food Packaging and Shelf Life, 9, 55-63, 2016.
  • Nazmi NN, Isa MIN, Sarbon NM. “Preparation and characterization of chicken skin gelatin/CMC composite film as compared to bovine gelatin film”. Food Bioscience, 19, 149-155, 2017.
  • Szusta J, Karakas O, Tomczyk A. “Experimental investigation of thin films with various overprints used for packaging labels”. Theoretical and Applied Fracture Mechanics, 97, 467-477, 2018.
  • Voon HC, Bhat R, Easa AM, Liong MT, Karim AA. “Effect of addition of halloysite nanoclay and SiO2 nanoparticles on barrier and mechanical properties of bovine gelatin films”. Food and Bioprocess Technology, 5(5), 1766-1774, 2012.
  • Hanani ZAN, Roos YH, Kerry JP. “Use and application of gelatin as potential biodegradable packaging materials for food products”. International Journal of Biological Macromolecules, 71, 94-102, 2014.
  • Venkatesan R, Rajeswari N, Thiyagu TT. “Preparation, characterization and mechanical properties of k-Carrageenan/SiO2 nanocomposite films for antimicrobial food packaging”. Bulletin of Materials Science, 40(3), 609-614, 2017.
  • Ahmad M, Benjakul S, Prodpran T, Agustini TW. “Physico-mechanical and antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with essential oils”. Food Hydrocolloids, 28(1), 189-199, 2012.
  • Hassannia-Kolaee M, Khodaiyan F, Pourahmad R, Shahabi-Ghahfarrokhi I. “Development of ecofriendly bionanocomposite: Whey proteinisolate/pullulan films with nano-SiO2”. International Journal of Biological Macromolecules, 86, 139-144, 2016.
  • Pei Y, Yang J, Liu P, Xu M, Zhang X, Zhang L. “Fabrication, properties and bioapplications of cellulose/collagen hydrolysate composite films”. Carbohydrate Polymers, 92(2), 1752-1760, 2013.
  • Estevez M, Vargas S, Castano VM, Rodriguez R. “Silica nano-particles produced by worms through a bio-digestion process of rice husk”. Journal of Non-Crystalline Solids, 355(14-15), 844-850, 2009.
  • Dong Y, Liu T, Sun S, Chang X, Guo N. “Preparation and characterization of SiO2/polydopamine/Ag nanocomposites with long-term antibacterial activity”. Ceramics International, 40(4), 5605-5609, 2014.
  • Pan H, Li GL, Liu RQ, Wang SX, Wang XD. “Preparation, characterization and application of dispersible and spherical nano-SiO2@copolymer nanocomposite in leather tanning”. Applied Surface Science, 426, 376-385, 2017.
  • Rahman IA, Padavettan V. “Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites-a review”. Journal of Nanomaterials, 8, 1-15, 2012.
  • Gennadios A, Weller CL, Hanna MA, Froning GW. “Mechanical and barrier properties of egg albumen films”. Journal of Food Science, 61(3), 585-589, 1996.
  • American Society for Testing Materials. “Standard Test Method for Water Vapor Transmission of Materials (E 96-05)”. Philadelphia, USA, Annual Book of ASTM Standards, 14, 2005.
  • Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F. “Bio-based composite edible films containing Origanum vulgare L. essential oil”. Industrial Crops and Products, 67, 403-413, 2015.
  • Kadam DM, Thunga M, Wang S, Kessler MR, Grewell D, Lamsal B, Yu C. “Preparation and characterization of whey protein isolate films reinforced with porous silica coated titania nanoparticles”. Journal of Food Engineering, 117(1), 133-140, 2013.
  • Shankar S, Teng X, Li G, Rhim JW. “Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films”. Food Hydrocolloids, 45, 264-271, 2015.
  • Chitprasert P, Ngamekaue N. “Stability enhancement of Ocimum Sanctum Linn. essential oils using stearic acid in aluminum carboxymethyl cellulose film-coated gelatin microcapsules”. Journal of Food Science, 82(6), 1310-1318, 2017.
  • Ge L, Zhu M, Xu Y, Li X, Li D, Mu C. “Development of antimicrobial and controlled biodegradable gelatin-based edible films containing nisin and amino-functionalized montmorillonite”. Food and Bioprocess Technology, 10(9), 1727-1736, 2017.
  • Mu C, Guo J, Li X, Lin W, Li D. “Preparation and properties of dialdehyde carboxymethyl cellulose crosslinked gelatin edible films”. Food Hydrocolloids, 27(1), 22-29, 2012.
  • Guo J, Li X, Mu C, Zhang H, Qin P, Li D. “Freezing-thawing effects on the properties of dialdehyde carboxymethyl cellulose crosslinked gelatin-MMT composite films”. Food Hydrocolloids, 33(2), 273-279, 2013.
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1300-7009
  • Başlangıç: 1995
  • Yayıncı: PAMUKKALE ÜNİVERSİTESİ