Isıl parametreleri değişken olan dairesel kanatların parametrelerin değişimi yöntemi kullanılarak optimizasyonu

Bu çalışmanın amacı, ısıl özelliklerin sıcaklıkla değiştiği dairesel kanatların optimum tasarımı için, tasarımcıya kullanışlı korelasyon denklemleri sunmaktır. Kanatların optimum boyutlarını elde etmek için kanattan olan ısı transferinin mümkün olan en az kabulle hesaplanması gerekir. Bu nedenle, bu çalışmada ısı taşınım katsayısı ve ısıl iletkenliğin sıcaklıkla değişimi göz önüne alınmış ve lineer olmayan kanat denklemi, nonlinear problemlerin çözümünde kullanımı çok yeni olan parametrelerin değişimi yöntemi ile çözülmüş, elde edilen sıcaklık dağılımı yardımıyla kanattan çevreye olan ısı transfer hızı boyutsuz problem parametreleri cinsinden hesaplanmıştır. Verilen problem parametreleri için ısı transfer hızını maksimum yapan kanat geometrileri saptanmıştır. Kaynama, doğal taşınım ve zorlanmış taşınımla ısı transfer modları için kullanılabilecek bu sonuçlar iki eş korelasyon denklemi ile tasarımcının hizmetine sunulmuştur.

Variation of parameters method for optimizing annular fins with variable thermal properties

The aim of this study is to offer useful correlation equations to the designer for the optimum design of annular fins with thermal properties varying with temperature. In order to obtain the optimum size of the fins, the heat transfer from the fin must be calculated with the least assumptions possible. Therefore, the variation of the heat transfer coefficient and thermal conductivity with the temperature are considered in this study and a nonlinear fin equation is solved with the variation of parameters method, which is quite new in the solution of nonlinear heat transfer problems. Heat transfer rate from the fin to the environment is calculated in terms of dimensionless problem parameters with the help of the obtained temperature distribution. Fin geometries maximizing the heat transfer rate are determined for the given problem parameters. These results, which can be used for nucleate boiling, natural convection and forced convection heat transfer modes, are offered to the designer with two identical correlation equations.

___

  • Kraus AD, Aziz A, Welty J. Extended Surface Heat Transfer. New York, USA, John Wiley & Sons Inc., 2001.
  • Laor K, Kalman H. “Performance and optimum dimensions of different cooling fins with a temperature-dependent heat transfer coefficient”. International Journal of Heat and Mass Transfer, 39, 1993-2003, 1996.
  • Aksoy IG. “Thermal analysis of annular fins with temperature-dependent thermal properties”. Applied Mathematics and Mechanics English Edition, 34, 1349-1360, 2013.
  • Chang MH. “Decomposition solution for fins with temperature dependent surface heat flux”. International Journal of Heat and Mass Transfer, 48, 1819-1824, 2005.
  • Kim S, Huang CH. “A series solution of the non-linear fin problem with temperature dependent thermal conductivity and heat transfer coefficient”. Journal of Physics D: Applied Physics, 40, 2979-2987, 2007.
  • Khani F, Raji MA, Nejad HH. “Analytical solutions and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient”. Communication in Nonlinear Science and Numerical Simulation, 14, 3327–3338, 2009.
  • Mosayebidorcheh S, Hatami M, Mosayebidorcheh T, Ganji D.D. “Optimization analysis of convective–radiative longitudinal fins with temperature-dependent properties and different section shapes and materials”. Energy Conversion and Management, 106, 1286-1294, 2015.
  • Arslanturk C. “Correlation equations for optimum design of annular fins with the temperature dependent thermal conductivity”. Heat and Mass Transfer, 45, 519-525, 2009.
  • Kundu B, Bhanja D. “Performance and optimization analysis of a constructal T-shaped fin subject to variable thermal conductivity and convective heat transfer coefficient International Journal of Heat and Mass Transfer, 53, 254-267, 2010.
  • Bouaziz MN, Aziz A. “Simple and accurate solution for convective–radiative fin with temperature dependent thermal conductivity using double optimal linearization”. Energy Conversion and Management, 51, 2776-2782, 2010.
  • Kundu B. “Analytic method for thermal performance and optimization of an absorber plate fin having variable thermal conductivity and overall loss coefficient”. Applied Energy, 87, 2243-2255, 2010.
  • Khani F, Aziz A. “Thermal analysis of a longitudinal trapezoidal fin with temperature-dependent thermal conductivity and heat transfer coefficient”. Communication in Nonlinear Science and Numerical Simulation, 15, 590-601, 2010.
  • Aziz A, Khani F. “Convection-radiation from a continuously moving fin of variable thermal conductivity”. Journal of Franklin Institute, 348, 640-651, 2011.
  • Torabi M, Aziz A. “Thermal performance and efficiency of convective-radiative T-Shaped fin with temperature dependent thermal conductivity, heat transfer coefficient and surface emissivity”. International Communication in Heat and Mass Transfer, 39, 1018-1029, 2012.
  • Mosayebidorcheh S, Farzinpoor M, Ganji DD. “Transient thermal analysis of longitudinal fins with internal heat generation considering temperature-dependent properties and different fin profiles”. Energy Conversion and Management, 86, 365-370, 2014.
  • M Moradi A, Hayat T, Alsaedi A. “Convection-radiation thermal analysis of triangular porous fins with temperature-dependent thermal conductivity by DTM”. Energy Conversion and Management, 77, 70-77, 2014.
  • Cengel YA, Palm WJ. Differential Equations for Engineers and Scientists, New York, USA, McGraw Hill, 2012.
  • Mohyud-Din ST, Noor MA, Waheed A. “Variation of parameters method for initial and boundary value problems”. World Applied Sciences Journal, 11, 622-639, 2010.
  • Rahmatullah, Mohyud-Din ST. “Variation of parameters method for nonlinear diffusion equations”. International Journal Modern Applied Physics, 3, 48-56, 2013.
  • Moore TJ. Application of Variation of Parameters to Solve Nonlinear Multimode Heat Transfer Problems. PhD Dissertation; Brigham Young University, USA, 2014.
  • Moore TJ, Jones MR. “Analysis of the conduction-radiation problem in absorbing, emitting, non-gray planar media using an exact method International Journal of Heat and Mass Transfer, 73, 804-809, 2014.
  • Bergman TL, Lavine AS, Incropera, FP, DeWitt DP. Fundamentals of Heat and Mass Transfer. 7th ed. New Jersey, USA, John Wiley and Sons, 2011.
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1300-7009
  • Başlangıç: 1995
  • Yayıncı: PAMUKKALE ÜNİVERSİTESİ