İstanbul’da bir fotovoltaik sistemin tekno-ekonomik ve çevresel analizi

Artan küresel enerji talebi ve değişken maliyetler, insanoğlunu sürdürülebilir ve düşük maliyetli enerji çözümlerine yönlendirmektedir. Yenilenebilir kaynaklar ve buna benzer enerji üreten teknolojiler, ekonomik ve çevre dostu seçenekler olarak öne çıkmaktadır. Son yıllarda enerji üretim maliyetlerindeki ciddi azalma ile güneş enerjisi ön plana çıkmıştır ve milli ekonomiler içerisindeki üretim payı artmıştır. Güneş enerjisinden elektrik üreten teknolojiler sadece düşük maliyetli olmalarından dolayı değil, aynı zamanda iklim değişikliği ile mücadeleye ve sürdürülebilir kalkınma hedeflerine katkılarından dolayı da tercih edilmektedir. Bu çerçevede; bu çalışmanın amacı, İstanbul’da bulunan bir yerleşkenin elektrik talebini karşılayacak, güneş enerjisini kaynak olarak kullanan fotovoltaik (FV) modüllerden oluşan bir sistemin tekno-ekonomik ve çevresel yönlerini incelemektir. Milli Savunma Üniversitesi Deniz Harp Okulu’nun toplam güneş potansiyeli; yerleşkedeki FV modüllerin çatıdaki kullanılabilir alanına, çatının kullanılabilir birim alanına, verime, inventör verimine ve FV dizini üzerindeki sıcaklık etkisine bağlı olarak hesaplanmıştır. Önerilen çatı tip FV sisteminin potansiyeli, modifiye edilmiş bir hesaplama yöntemi ile belirlenmiş ve daha sonra önerilen FV sisteminin fizibilitesi RETScreen simülasyon aracı tarafından geliştirilmiştir. Sonuç olarak, önerilen sistemin dört sene geri ödeme süresi sonunda pozitif nakit akışına ulaştığı ve öngörülen 25 yıllık proje ömrünün devamında da kâr durumunu devam ettirdiği, toplam sera gazı salımında %93 oranında azaltım sağlayarak 721.1 ton ham petrol kullanımından tasarruf sağlayacağı hesaplanmış ve Deniz Harp Okulu yerleşkesi için maliyet-etkin ve çevre dostu bir uygulama olduğu değerlendirilmiştir.

Techno-economic and environmental analysis of a photovoltaic system in İstanbul

Increasing global energy demand and fluctuating costs drive mankind to sustainable and cost-effective energy solutions. Renewable resources and relevant energy-generating technologies stand out as sustainable and eco-friendly options. In recent years, with a significant decrease in energy production costs, solar energy has come to the fore and increased its production share in the national economies. Solar based electricity production technologies are preferred not only with their cost-effectiveness but also with their contribution to combating climate change and achieving sustainable development targets. In this context; the aim of this study is to analyze the techno-economic and environmental aspects of a system consisting of photovoltaic (PV) modules that use solar energy as a source to provide electrical power demand in a campus located in Istanbul. The solar potential of the Turkish Naval Academy of the National Defense University has been calculated based on the available rooftop area for PV modules in the campus, the availability of per unit area of the roof, the efficiency, inverter efficiency and temperature effects on the PV array’s performance. The potential of the roof-mounted PV system was calculated using a modified calculation and then the feasibility of the proposed energy system has been developed by the RETScreen simulation tool. As a result, it is calculated that the proposed system will reach positive cash flow at the end of four years repayment period and continue its profit condition throughout the 25 years project life cycle, which will decrease the total greenhouse gas emissions by 93% and save 721.1 tons of crude oil. It has been evaluated as a cost-effective and environment-friendly application for the campus of the Turkish Naval Academy.

Kaynakça

Parlak KS. “FV Array Reconfiguration method under partial shading conditions”. Electrical Power and Energy System, 63, 713-721, 2014.

Patra S, Kishor N, Mohanty S, Ray P.K. “Power quality assessment in 3-U grid connected FV system with single and dual stage circuits”. Electrical Power and Energy System, 75, 275-288, 2015.

Pinto SJ, Panda G. “Performance evaluation of WPT based ıslanding detection for grid-connected FV systems”. Electrical Power and Energy System, 78, 537-546, 2014.

Wu YC, Chen MJ, Huang SH, Tsai MT. Li CH. “Maximum power point tracking on stand-alone solar power system: three-point-weighting method ıncorporating mid-point tracking”. Electrical Power and Energy System, 52, 14-24. 2014.

Sharma V, Chandel SS. “Performance analysis of a 190 kWp grid ınteractive solar photovoltaic power plant in India”. Energy, 55, 476-485, 2013.

Mondol JD, Yohanis Y, Smyth M, Norton B. “Long term performance analysis of a grid-connected photovoltaic system in Northern Ireland”. Energy Conversion and Management, 47(18), 2925-2947, 2006.

Tarigan E, Kartikasari FD. “Techno-economic simulation of a grid-connected FV system design as specifically applied to residential in Surabaya, Indonesia”. Energy Procedia, 65, 90-99, 2015.

Pundir KSS, Varshney N, Singh GK. “Comparative study of performance of grid connected solar photovoltaic power system in IIT Roorkee Campus”. In Paper of International Conference on Innovative Trends in Science, Engineering and Management, (1) 22-431, 2016.

Kato K, Murata A, Sakuta K. “An evaluation on the life cycle of photovoltaic energy system considering production energy of off-grade silicon”. Solar Energy Materials and Solar Cells, 47(1–4), 95-100, 1997.

Kannan R, Leong KC, Osman R, Ho HK, Tso CP. “Life cycle assessment study of solar FV systems: an example of a 2.7 kWp distributed solar FV system in Singapore”. Solar Energy, 80(5), 555-563, 2006.

Muneer T, Younes S, Lambert N, Kubie J. “Life cycle assessment of a medium-sized photovoltaic facility at a high latitude location”. Journal of Power and Energy, 220(6), 517-524, 2006.

Hondo H. “Life cycle SG emission analysis of power generation systems: japanese case”. Energy, 30(11-12), 2042-2056, 2005.

Jungbluth N, Bauer C, Dones R, Frischknecht R. “life cycle assessment for emerging technologies: a case studies for photovoltaic and wind power”. International Journal of Life Cycle Assessment, 10(1), 24-34, 2005.

Jungbluth N. “Life cycle assessment of crystalline photovoltaics in the swissecoinvent database”. Progress in Photovoltaics: Research and Applications, 13(5), 429-446, 2005.

Kaltschmitt M, Streicher W, Wiese A. Renewable energy: Technology, Economics and Environment. Berlin, Germany, Heidelberg, Springer Verlag, 2007.

Messenger RA. Ventre J. Photovoltaic Systems Engineering. 2nd ed. Washington DC, USA, CRC Press, 2003.

German Energy Society. Planning and Installing Photovoltaic Systems: A Guide for Installers, Architects and Engineers. 2nd ed. London, UK, CRC Press, 2008.

Kick C. “How is 100% Renewable Energy Possible for Turkey by 2020?”. Global Energy Network Institute; (GENI), California 92120, USA, Scientific Report, 20, 2011.

Ozake HB. “Using Solar Energy Sources to Generate Electricity in Turkey. In:”. European Energy and Natural Resources, 2013.

Bagher AM, Vahid MMA, Mohsen M. “Types of solar cells and application”. American Journal of Optics and Photonics, 3(5), 94-113, 2015.

Radhey SM, Rathore JS. “Shivani J. “Grid connected roof top solar power generation: a review”. International Journal of Engineering Development and Research, 3(1), 325-330, 2014.

Kanchikere J, Kumar KK. “Estimation of cost analysis for 5 kW grid connected solar roof top power plant: a case study”. International Journal of Engineering Science and Computing, 6(4), 4505-4507, 2016.

Bhoye H, Sharma G. “An analysis of one mw photovoltaic solar power plant design”. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 3(1), 6969-6973, 2014.

Clean Energy Decision Support Centre. Clean Energy Project Analysis: RETScreen Engineering and Cases Textbook. Third Edition. Canada, 2005.

Lee KH, Lee DW, Baek NC, Kwon HM, Lee CJ. “Preliminary determination of optimal size for renewable energy resources in buildings using RETScreen”. Energy, 47, 83-96, 2012.

RETScreen International. “Renewable Energy Project Analysis Software”. https://www.nrcan.gc.ca/maps-tools-publications/tools/data-analysis-software-modelling/retscreen/7465 (13.04.2019.