Hava aralıkları eşit dağıtılmış şönt reaktör modellenmesi

Elektrik enerjisi günümüzde vazgeçilmez bir yere sahiptir. Elektrik enerjisinin üretildiği tesislerden kullanım alanlarına kadar ulaşmasını sağlayan ise iletim ve dağıtım hatlarıdır. Ancak, uzun iletim hatlarındaki reaktif güç dengesinin sağlanamaması sonucunda iletilen enerji hem kalitesiz olur hem de taşıma sırasında oluşan kayıplar artar. Bu olumsuz durumların yaşanmaması için iletim hatlarının tamamlayıcı bir parçası olarak geliştirilen şönt reaktörler kullanılmalıdır. Şönt reaktörlerin bu işlevi en iyi şekilde yerine getirebilmesi için tasarım aşaması önemli bir yere sahiptir. Reaktör boyutu, hava aralığının toplam uzunluğu, bırakılan hava aralığı sayısı gibi önemli parametreler reaktörün endüktans değerini doğrudan etkilemektedir. Reaktörün endüktans değeri ise iletim hatlarındaki reaktif güç dengesini sağlamak adına yapılacak olan kompanzasyon işleminin sonucunu doğrudan etkileyen bir faktördür. Bu çalışmada; hava aralıkları eşit dağıtılmış farklı hava aralık sayılarına sahip üç ve beş bacaklı nüve yapılı şönt reaktör tasarımı yapılmıştır. Tasarımlara ait benzetim çalışmaları, yüksek doğruluğa ve kararlılığa sahip Sonlu Elemanlar Yöntemi kullanılarak yapılmıştır. Benzetim çalışmalarının sonuçları ile ekonomik analizlerin karşılaştırmalı değerlendirmesi yapılmıştır.

Modelling of the equally distributed air gapped shunt reactor

Today, electrical energy has an indispensable place. The transmission and distribution lines deliver electrical energy from power plants to usage areas. However, as the reactive power balance in the long transmission lines cannot be achieved, the transmitted energy is both has poor quality and increases the transportation losses. Shunt reactors developed as an integral part of the transmission lines should be used to avoid these adverse events. Shunt reactors have an important place in the design phase in order to perform this function in the best way. Important parameters such as the reactor size, the total length of the air gap, the number of air gaps, directly affect the reactor's inductance value. The inductance value of the reactor is a factor that directly affects the result of the compensation process to ensure the reactive power balance in the transmission lines. In this study; three-legged and five-legged core shunt reactor designs are done with different air gap numbers and equally distributed air gapped. Simulation studies of the designs are done by using Finite Element Method with high accuracy and stability. A comparative evaluation of the results of simulation studies and economic analyzes are done.

___

  • Heatcote M. J&P Transformer Book. Thirteenth Edition, Oxford, United Kingdom, Newness An imprint on Elsevier 2007.
  • Tao Zheng, Zhao YJ, Ying Jin, Chen PL, Zhang FF. “Design and analysis on the turn-to-turn fault protection scheme for the control winding of a magnetically controlled shunt reactor”. IEEE Transactions, 30(2), 967-975, 2015.
  • Turan H, Çekirdekli D. Hava Aralığı Bulunan Reaktör Çeşitlerinin İrdelenmesi ve Bir Prototip için Uygulama Örneği. Yüksek Lisans Tezi, Kocaeli Üniversitesi, Kocaeli, Türkiye 2009.
  • Dönük A, Modeling and Design of Iron-Core Shunt Reactors With Discretely Distributed Air-Gaps. Doktora Tezi, ODTÜ, Ankara, Turkey, 2012.
  • Lotfi A, Faridi M. “Design optimization of gapped-core shunt reactor”. IEEE, 48(4), 1673-1676, 2012.
  • Enright W, Watson N, Nayak O. “Three phase five Limb unified magnetic equivalent circuit transformer models for PSCAD V3”. International Conference on Power Systems Transients, Budapest, Hungary, 20-24 June 1999.
  • Arabul AY, Senol I. “Development of a hot-spot temperature calculation method for the loss of life estimation of an ONAN distribution transformer”. Electrical Engineering, 100(3), 1651-1659, 2018.
  • Arabul AY, Arabul FK, Senol I. “Experimental thermal investigation of an ONAN distribution transformer by fiber optic sensors”. Electric Power Systems Research, 155, 320-330, 2018.
  • Sakura T, Takashi N, Fujiwara K. “3D-finite element analysis of eddy current loss of three-phase shunt reactor”. JSAEM 1,81-88, 2003.
  • Lotfi A, Rahimpour E. “Optimum design of core blocks and analyzing the fringing effect shunt reactors with distributed gapped-core”. Elsevier, Electric Power Systems Research, 101(2013), 63-70, 2013.
  • Yan-ping L, Hai-ting Z, Zhen A. “Leakage inductance calculation and simulation research of extra-high voltage magnetically controlled shunt reactor”. Mechanic Automation and Control Engineering (MACE), 2010 International Conference, 26-28 June 2010.
  • Dönük A. “Effects of air gaps on core losses of shunt reactors/şönt reaktörlerde hava aralıklarının demir kayıplarına etkisi”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 12(1), 103-108, 2016.
  • Reece ABJ, Preston TW. Finite Element Methods in Electrical Power Engineering. New York, USA, Oxford University Press Inc,2000.
  • Nashawithi E, Fisher N, Bin Le, Taylor D. “Impact of shunt reactors on transmission line protection”. 38th Annual Western Protective Relay Conference, Spokane, WA, 18-20 October 2011.
  • Arabul AY, Kurt E, Senol I, Arabul FK. “An ınvestigation on flux density of three phase distributed Air-Gap 3-5 legged shunt reactor”. IRES-27th ICIET, Amsterdam, Netherlands, 25 December 2015.
  • Power transformers - Part 6: Reactors. IEC 6076-6, 2007.
  • IEEE Loss Evaluation Guide for Power Transformers and Reactors. IEEE Std. C57.120.1991
  • Bertotti, G. “General properties of power losses in soft ferromagnetic materials”. IEEE Transactions on Magnetics, 24(1), 621–630, 1988.
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1300-7009
  • Başlangıç: 1995
  • Yayıncı: PAMUKKALE ÜNİVERSİTESİ