Farklı krank mili hızları için buji ateşlemeli bir motorun ekserji analizi

Bu çalışmada, buji ateşlemeli bir motorun performansı farklı krank mili hızları için ekserjetik olarak incelenmektedir. Test motoru 95 oktan benzin yakıtlı VSG413 SI türü motordur. Test motoru 1.3 l hacim, dört strok, dört silindir, 45 kW’lık maksimum güç kapasitesi ve 98 Nm’lik maksimum tork kapasitesine sahiptir. Deneyler tam yük test koşulları altında gerçekleştirilmiştir. Krank mili hızı 1200 d/d ve 5000 d/d aralığında değiştirilmiştir. Hesaplamalarda, deneylerden elde edilen gerçek çalışma verileri kullanılmıştır. %29.78’lik maksimum enerji verimi ve %27.77’lik maksimum ekserji veriminin 2500 rpm’lik krank mili hızında elde edildiği tespit edilmiştir. Entropi üretimi krank mili hızının artmasıyla artmaktadır ve bütün çalışma boyunca 0.059 kW/K ile 0.253 kW/K aralığında değişmektedir.

Exergy analysis of a spark ignition engine for different crankshaft speeds

In this study, a spark ignition (SI) engine performance is exergetically investigated for different crankshaft speeds. The test engine is VSG413 SI type engine fueled with 95 octane gasoline. The test engine has 1.3 l volume, four stroke, four cylinder, 45 kW maximum power capacity and 98 Nm maximum torque capacity. The experiments are realized under fully loaded test conditions. The crankshaft speed is changed between 1200 rpm and 5000 rpm. In the calculations, actual operating data obtained by experiments are used. It is found that maximum energy and exergy efficiencies are obtained at crankshaft speed of 2500 rpm, which are 29.78% and 27.77%, respectively. Entropy generation rate increases with increase in crankshaft speed and ranged from 0.059 kW/K to 0.253 kW/K for all study.

___

  • Dincer I. “Thermodynamics, exergy and environmental impact”. Energy Sources, 22(8), 723-732, 2000.
  • Dincer I, Rosen MA. “Exergy as a driver for achieving sustainability”. International Journal of Green Energy, 1(1), 1-19, 2004.
  • Rakopoulos CD, Giakoumis EG. “Second law analyses applied to internal combustion engines operation”. Progress in Energy Combustion Science, 32(1), 2-47, 2006.
  • Caliskan H, Tat ME, Hepbasli A. “Performance assessment of an internal combustion engine at varying dead (reference) state temperatures”. Applied Thermal Engineering, 29(16), 3431-3436, 2009.
  • Kopac M, Kokturk L. “Determination of optimum speed of an internal combustion engine by exergy analysis”. International Journal of Exergy, 2(1), 40-54, 2005.
  • Li Y, Jia M, Chang Y, Kokjohn SL, Reitz RD. “Thermodynamic energy and exergy analysis of three different engine combustion regimes”. Applied Energy, 180, 849-858, 2016.
  • Khaliq A, Trivedi SK, Dincer I. “Investigation of a wet ethanol operated HCCI engine based on first and second law analyses”. Applied Thermal Engineering, 31(10), 1621-1629, 2011.
  • Sayin C, Hosoz M, Canakci M, Kilicaslan I. “Exergy and energy analyses of a gasoline engine”. International Journal of Energy Research, 31(3), 259-273, 2007.
  • Canakci M, Hosoz M. “Energy and exergy analyses of a diesel engine fueled with various biodiesels”. Energy Sources, Part B: Economics, Planning, and Policy, 1(4), 379-394, 2006.
  • Azoumah Y, Blin J, Daho T. “Exergy efficiency applied for the performance optimization of a direct injection compression ignition (CI) engine using biofuels”. Renewable Energy, 34(6), 1494-1500, 2009.
  • Kanoglu M, Dincer I, Rosen MA. “Exergetic performance investigation of a turbocharged stationary diesel engine”. International Journal of Exergy, 5(2), 193-203, 2008.
  • Caliskan H, Tat ME, Hepbasli A. “A review on exergetic analysis and assessment of various types of engines”. International Journal of Exergy, 7(3), 287-310, 2010.
  • Sezer I, Bilgin A. “Exergy analysis of SI engines”. International Journal of Exergy, 5(2), 204-217, 2008.
  • Ameri M, Kiaahmadi F, Khanaki M, Nazoktabar M. “Energy and exergy analyses of a spark ignition engine”. International Journal of Exergy, 7(5), 547-563, 2010.
  • Jehad AAY, Ozcan H, “Second law analysis of an LPG-powered 4-stroke SI engine under variable stroke length and compression ratio”. International Journal of Exergy, 8(2), 113-127, 2011.
  • Razmara M, Bidarvatan M, Shahbakhti M, Robinett RD. “Optimal exergy-based control of internal combustion engines”. Applied Energy, 183, 1389-1403, 2016.
  • Li Y, Jia M, Kokjohn SL, Chang Y, Reitz RD. “Comprehensive analysis of exergy destruction sources in different engine combustion regimes”. Energy, 149, 697-708, 2018.
  • Jafarmadar S. “Exergy analysis of hydrogen/diesel combustion in a dual fuel engine using three-dimensional model”. International Journal of Hydrogen Energy, 39(17), 9505-9514, 2014.
  • Paul A, Panua R, Debroy D. “An experimental study of combustion, performance, exergy and emission characteristics of a CI engine fueled by diesel-ethanol-biodiesel blends”. Energy, 141, 839-852, 2017.
  • Cengel YA, Boles MA. Thermodynamics: An Engineering Approach. 5th ed. New York, USA, McGraw-Hill, 2006.
  • Kotas TJ. The Exergy Method of Thermal Plant Analysis. Florida, USA, Krieger Publishing Company, 1995.
  • Bejan A. Advanced Engineering Thermodynamics. 3rd ed. New York, USA, John Wiley & Sons, 2006.
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1300-7009
  • Başlangıç: 1995
  • Yayıncı: PAMUKKALE ÜNİVERSİTESİ