Değişken hızlı rüzgâr türbinleri için geri adımlamalı doğrusal olmayan bir denetleyici tasarımı

Değişken hızlı rüzgâr türbinlerinin rotor hızını uygun bir şekilde denetlemek, enerji üretimini ve güç verimliliğini eniyilemek için başvurulabilecek yöntemlerden bir tanesidir. Bu çalışmanın temel hedefi değişken hızlı rüzgâr türbinlerinin rotor hızı denetimini sağlayabilecek yapıda özgün bir doğrusal olmayan dayanıklı ve uyarlamalı denetleyici tasarlamaktır. Değişken hızlı rüzgâr türbinlerinin mekanik ve elektrik yapıları incelendiğinde geri adımlamalı denetim tasarımı yaklaşımının bu tip sistemler için denetleyici tasarımı gerçeklemeye oldukça uygun olduğu tespit edilmiştir. Bu durum göz önünde bulundurularak bu çalışmada sunulan denetleyici yapısı geri adımlamalı denetim tasarımı yaklaşımı kullanılarak tasarlanmıştır. Denetleyicinin dayanıklı yapısı sistem modeli ve parametreleri hakkında herhangi bir bilgiye ihtiyaç duyulmaksızın denetim hedefine ulaşmaya olanak sağlarken, uyarlamalı yapısı ise denetim esnasında parametrik belirsizlikleri telafi edebilmektedir. Tasarlanan denetleyicinin kuramsal çözümlemesi Lyapunov-tabanlı bir yöntemle tamamlanarak çalışmada sunulmuştur. Elde edilen sonuçlar, tasarlanan denetleyicinin başarımının kuramsal bir ispatı niteliğindedir. Tasarımın başarımını daha net bir şekilde ortaya koymak için ise takip rotası olarak farklı rotor hızı senaryoları kullanılan benzetimler yapılmış ve bu benzetimlerin sonuçlarına çalışmada yer verilmiştir.

A backstepping nonlinear control design for variable speed wind turbines

Controlling the rotor speed of variable speed wind turbines properly is one of the most appropriate methods to optimize the energy production and power efficiency of these type of energy production systems. Designing a novel nonlinear robust adaptive controller that is able to provide the rotor speed control of variable speed wind turbines is the main purpose of this study. It was identified that the backstepping control design technique is a feasible way to design a controller for variable speed wind turbines when their mechanical and electrical subsystems are considered. The control design presented in this study is designed via backstepping control design approach by considering this issue. Robust structure of the designed controller provides that it reaches control purpose without using any information about system model and its parameters while it adaptive structure compensates the parametric uncertainties during the control process. Lyapunov-based arguments are used to complete the theoretical analysis of the designed controller. Results of this analysis theoretically prove that the designed controller is able to reach the control purpose. Additionally, performance of the designed controller is demonstrated via numerical simulation results that are realized by considering different desired rotor speed scenarios.

___

  • Laks J, Pao L, Wright A. “Control of wind turbines: Past, present, and future”. American Control Conference, St. Louis, MO, USA, 10-12 June 2009.
  • Pao L, Jonhson K. “Control of wind turbines”. IEEE Control Systems, 31(2), 44-62, 2011.
  • Bhandare A, Bandekar P, Mane S. “Wind energy maximum power extraction algorithms: A review”. International Conference on Energy Efficient Technologies for Sustainability, Nagercoil, India, 10-12 April 2013.
  • Song Y, Dhinarakaran B, Bao X. “Variable speed control of wind turbines using nonlinear and adaptive algorithms”. Journal of Wind Engineering and Industrial Aerodynamics, 85, 293-308, 2000.
  • Mullane A, Lightbody G, Yacamini R. “Adaptive control of variable speed wind turbines”. 36th Universities of Power Engineering Conference, Swansea, England, 12-14 September 2001.
  • Boukhezzar B, Siguerdidjane H. “Nonlinear control of variable speed wind turbines without wind speed measurement”. IEEE Conference on Decision and Control and the European Control Conference, Seville, Spain, 12-15 December 2005.
  • Boukhezzar B, Siguerdidjane H, Hand M. “Nonlinear control of variable-speed wind turbines for generator torque limiting and power optimization”. Journal of Solar Energy Engineering, 128(4), 516-530, 2006.
  • Zhang J, Cheng M, Chen Z. “Nonlinear control of variable-speed wind turbines with permanent magnet generators”. International Conference on Electrical Machines and Systems, Seoul, Korea, 8-11 October 2007.
  • Iyasere E, Salah M, Dawson D, Wagner J. “Nonlinear robust control to maximize energy”. American Control Conference, Seattle, WA, USA, 11-13 June 2008.
  • Beltran B, Ahmed AT, Benbouzid M. “Sliding mode power control of variable-speed wind energy conversion systems”. IEEE Transactions on Energy Conversion, 23(2), 551-558, 2008.
  • Beltran B, Ahmed AT, Benbouzid M. “High-order sliding mode control of variable speed wind turbines”. IEEE Transactions on Industrial Electronics, 56(9), 3314-3321, 2009.
  • Barambones O. “Sliding mode control strategy for wind turbine power maximization”. Energies, 5(7), 2310-2330, 2012.
  • Hui J, Baksgai A. “A new adaptive control algorithm for maximum power point tracking for wind energy convertion systems”. IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15-19 June 2008.
  • Ozbay U, Zergeroglu E, Sivrioglu S. “Adaptive backstepping control of variable speed wind turbines”. International Journal of Control, 81(6), 910-919, 2008.
  • Fernandez L, Garcia C, Jurado F. “Comparative study on the performance of control systems for doubly fed induction generator (DFIG) wind turbines operating with power regulation”. Energy, 33(9), 1438-1452, 2008.
  • Boukhezzar B, Siguerdidjane H. “Nonlinear control of a variable-speed wind turbine using a two-mass model”. IEEE Transactions on Energy Conversion, 26(1), 149-162, 2010.
  • Rajendran S, Jena D. “Control of variable speed variable pitch wind turbine at above and below rated wind speed”. Journal of Wind Energy, 2014, 1-14, 2014.
  • Lin W, Hong CM. “Intelligent approach to maximum power point tracking control strategy for variable-speed wind turbine generation system”. Energy, 36(6), 2440-2447, 2010.
  • Iyasere E, Salah M, Dawson D, Wagner J, Tatlicioglu E. “Optimum seeking-based non-linear controller to maximize energy capture in a variable speed wind turbine”. IET Control Theory & Applications, 6(4), 526-532, 2012.
  • Ren B, Zhong QC. “UDE-based robust control of variable-speed wind turbines”. Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10-13 November 2013.
  • Ren B, Wang Y, Zhong QC. “UDE-based control of variable-speed wind turbine system”. International Journal of Control, 90(1), 121-136, 2017.
  • Petkovic D, Cojbasic Z, Nikolic V, Shamshirband S, Kiah MLM, Anuar NB, Whab AWA. “Adaptive neuro-fuzzy maximal power extraction of wind turbine with continuously variable transmission”. Energy, 64, 868-874, 2014.
  • Saravanakumar R, Jena D. “Validation of an integral sliding mode control for optimal control of a three blade variable speed variable pitch wind turbine”. International Journal of Electrical Power & Energy Systems, 69, 421-429, 2015.
  • Saravanakumar R, Jena D. “Nonlinear control of wind turbine with optimal power capture and load mitigation”. Energy Systems, 7(3), 429-448, 2016.
  • Moradi H, Vossoughi G. “Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers”. Energy, 90(2), 1508-1521, 2015.
  • Seker M, Zergeroglu E, Tatlicioglu E. “Non-linear control of variable speed wind turbines with permanent magnet synchronous generators: A robust Backstepping Approach”. International Journal of Systems Science, 47(2), 420-432, 2015.
  • Asl HJ, Yoon J. “Adaptive control of variable-speed wind turbines for power capture optimization”. Transactions of the Institute of Measurement and Control, 39(11), 1663-1672, 2017.
  • Coronado A, Gamez M, Penazola O. “Adaptive control of variable-speed variable-pitch wind turbines for power regulation”. IEEE International Conference on Renewable Energy Research and Applications, San Diego, CA, USA, 5-8 November 2017.
  • Ardjal A, Mansouri R, Bettayeb M. “Fractional order sliding mode control of wind turbine for maximum power tracking”. Transactions of the Institute of Measurement and Control, 41(2), 447-457, 2019.
  • Shaltout ML, Ma Z, Chen D. “An adaptive economic model predictive control approach for wind turbines”. Journal of Dynamic Systems, Measurement and Control, 140(5), 2018.
  • Bidikli B. “A robust adaptive control design for the rotor speed control of variable speed wind turbines”. International Journal of Control, In press, https://doi.org/10.1080/00207179.2019.1566644, (22.01.2019).
  • Bergen AR. Power system analysis. Delhi, India, Pearson Education, 2009.
  • Krstic M. “Manifolds and asymptotic properties of adaptive nonlinear stabilizers”. IEEE Transactions On Automatic Control, 41(6), 817-829, 1996.