Atık lastik parçalarıyla güçlendirilmiş iri taneli zeminlerin donma-çözülme sonucu mukavemetlerindeki değişimin incelenmesi

İklimsel farklılıkların sıkça yaşandığı bölgelerde mühendislik yapıları farklı yükler altında olumsuz etkilemektedir. Bu etkinin iri taneli zeminlerde çeşitli atık malzemeler katılımıyla azaltılması yönünde çalışmalar yapılmaktadır. Bu çalışma da atık lastik parçalarıyla (AL) güçlendirilmiş iri taneli zeminin (TZ) donma-çözülme sonucu mukavemetlerindeki değişim incelenmiştir. Deneyler standart proktor enerjisi altında sıkıştırılması ile hazırlanan iri taneli zemin numuneleri üzerinde yürütülmüştür. Bu iri taneli zemin örneğine  ve  atık lastik ilavesi yapılarak 1,  7 ve 8 günlük çalışma odası sıcaklığındaki ) kür sonucu, serbest basınç mukavemetleri belirlenmiştir. En yüksek mukavemet artışı; TZ AL ( ) karışımda , TZ+  AL ( ) karışımda  ve TZ+ AL ( ) karışımda ise oranında olmuştur. Bu karışımlar, donma-çözülme deneyine tabii tutulmuştur. Deney sonucunda, TZ+%0.5AL (1.18 mm) karışımın mukavemeti  ve TZ+  AL ( ) karışımının mukavemeti  oranında düşerken, TZ+  AL ( ) karışımın mukavemeti ise  oranında artmıştır.

Investigation on the variation of strength of coarse grained soils reinforced with waste tires pieces as a result of freezing and thawing cycles

In regions where climatic differences frequently are affects especially engineering structures under different loads. This effect is being studied to reduce the participation of various waste materials in coarse grained soil. In this study, the changes in strength of coarse grained soil (CG) reinforced with scrap tire pieces (ST) was investigated under freezing- thawing conditions. Experiments were conducted on coarse grained samples prepared by compression under standard proctor energy. Unconfined compressive strength values of coarse grained soil sample with  and  addition of scrap tires were determined at studied temperature (  oC) on days 1, 7 and 28. The highest increase rate of strength was  in CG+  ST ( ) mixture,  in CG+  ST ( ) mixture and  in CG+  ST ( ) mixture. The freeze-thaw test was applied on this mixture. The results showed that while the strength rate of CG+  ST ( ) and CG+  ST ( ) mixtures decreased to  and  respectively; the strength of CG+  ST ( ) mixture increased to

___

  • Akbulut S, Arasan S, Kalkan E. “Modification of clayey soils using scrap tire rubber and synthetic fibers”. Applied Clay Science 38, 23-32, 2007.
  • Andersland OB, Ladanyi B. Frozen Ground Engineering. 2nd ed. USA, John Wiley & Sons, 2004.
  • ASTM D. 698-78. “Fundamental Principles of Soil Compaction”. American Society for Testing And Materials. West Conshohocken, Pennsylvania, USA, 2012.
  • ASTM D. 2166. “Standard Test Method for Unconfined Compressive Strength of Cohesive Soil”. American Society for Testing and Materials. West Conshohocken, Pennsylvania, USA, 2006.
  • ASTM D. 3080/D3080M-11. “Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions”. ASTM International, West Conshohocken, PA, 2011.
  • BS. 1377, Part 2. Methods of test for soils for civil engineering purposes, Classification tests. British Standards Institution, 1990.
  • Chauhan MS, Mittal S, Mohanty B. “Performance evaluation of silty sand subgrade reinforced with fly ash and fibre”. Geotextiles and Geomembranes, 26(5), 429-435, 2008.
  • Ghazavi M, Roustaie M. “The influence of freeze-thaw cycles on the unconfined compressive strength of fiber-reinforced clay”. Cold regions science and technology, 61, 125-131, 2010.
  • Gray DH, Ohashi H. “Mechanics of fiber reinforcement in sand”. Journal of Geotechnical Engineering ASCE, 109(3), 335-353. 1983.
  • Hejazi SM, Sheikhzadeh M, Abtahi SM, Zadhoush A. “A simple review of soil reinforcment by using natural and synthetic fibers”. Construction and Building Materials, 30, 100-116, 2012.
  • Jafari M, Esna-Ashari M. “Effect of waste tire cord reinforcement on unconfined compressive strength of lime stabilized clayey soil under freze-thaw condition”. Cold Regions Science and Technology, 82, 21-29. 2012.
  • Kalkan E. “Prepartion of scrap tires ruber fiber-silica fume mixtures for modification of clayey soils”. Applied Clay Science, 80-81, 117-125, 2013.
  • Michalowski RL, Zhao A. “Failure of fiber-reinforced granular soils”. Journal of Geotechnical Engineering ASCE, 122(3), 226-234. 1996.
  • Michalowski RL, Cerma KJ. “Triaxial compression of sand reinforced with fibers”. Journal of Geotechnical and Geoenvironmental Engineering, 129(2), 125-136, 2003.
  • Ranjan G, Vasan RM, Charan HD. “Probabilistic analysis of randomly distributed fiber-reinforced soil”. Geotechnical Engineering ASCE, 419-426, 1996.
  • Singh P, Bawa S, Priyadarshee A, Kumar G. “Influence of tire chips on the behaviour of soil”. Journal of Civil Engineering and Environmental Technolgy, 3(1), 23-27, 2016.
  • Zaimoğlu AŞ, Hattatoğlu F, Akbulut RK. “Yüke maruz ince taneli zeminlerin donma-çözülme davranışı” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 19(3), 117-121, 2013.
  • Zaimoğlu AŞ, Akbulut RK, Arasan S. “Effect of freze- thaw cycles on strength behavior of compacted chicken quill clay composite in undrained loading”. Jornal of Natural Fibers, 13(3), 299-308, 2015.
  • Zaimoglu AS, Calik Y, Akbulut RK, Yetimoglu T. “A study on freeze-thaw behavior of randomly distributed fiber-reinforced soil”. Periodica Polytechnica: Civil Engineering, 60(1), 3-9, 2016.
  • Yarbaşı N, Kalkan E, Akbulut S. “Modification of the geotechnical properties, as influenced by freze-thaw, of granular soils with waste additives”. Cold Regions Science and Technology, 48, 44-54, 2007.
  • Yarbaşı N. “Atık lastik parçaları ile güçlendirilmiş killi zeminlerin donma-çözülme davranışı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(6), 559-562, 2016.
  • Yetimoglu T, Salbas O. “A study on shear strength of sands reireinforced with randomly distributed discrete fibers”. Geotextiles and Geomembranes 21, 103-110, 2003.