Aktif süspansiyon sistemleri için bilinmeyen bozucu etkisi altında uyarlamalı kontrolcü tasarımı

Bu çalışmada, aktif süspansiyon sistemleri için yoldan gelen bozucu etkinin bilinmediği kabulü yapılarak, uyarlamalı kontrolcü tasarlanmıştır. Yol düzgünsüzlüğünden kaynaklanan bozucu, frekans, genlik ve faz değerleri bilinmeyen farklı sinüzoidal dalgaların toplamı olarak modellenmiş ve gözlemci tasarımı yapılmıştır. Böylece bozucu parametrize edilmiş ve geri adımlama yöntemi kullanılarak uyarlamalı kontrolcü tasarımı yapılmıştır. Kapalı çevrim sistemin kararlılığı kanıtlanmış ve yol bozucusu etkisi altında taşıt gövde ivmesinin bastırıldığı gösterilmiştir. Kontrolcünün performansı benzetim ile test edilmiştir.

Design of an adaptive controller under unknown disturbance input for active suspension systems

In this paper, an adaptive backstepping controller is designed where the road disturbance is assumed that it is not measured. Therefore, the disturbance is modelled as a sum of sinusoidals where amplitude, phase and frequency are considered as unknown. Then, the observer is parametrized. After the design of the observer, an adaptive controller is designed with using backstepping technique. It is proven that the closed loop system is stable and the acceleration of the body is attenuated under the effect of the road disturbance. To reveal the performance of the controller, a simulation is illustrated with road test.

___

  • Cao D, Song X, Ahmadian M. “Editors’ perspectives: road vehicle suspension design dynamics, and control”. Vehicle system dynamics, 49(1-2), 3-28, 2011.
  • Hrovat, D. “Survey of advanced suspension developments and related optimal control applications”. Automatica, 33(10), 1781-1817, 1997.
  • Aly A, Farhan A. "Vehicle suspension systems control: a review". International Journal of Control, Automation and Systems, 2(2), 46-54, 2013.
  • Koch G, Sebastian S, Boris L. "Reference model based adaptive control of a hybrid suspension system". IFAC Proceedings, 43(7), 312-317, 2010.
  • Taghirad H, Esmailzadeh E. "Automobile passenger comfort assured through LQG/LQR active suspension". Journal of vibration and control, 4(5), 603-618, 1998.
  • Guclu R. "Fuzzy logic control of seat vibrations of a non-linear full vehicle model". Nonlinear Dynamics, 40(1), 21-34, 2005.
  • Guclu RN Yagiz. "Comparison of different control strategies on a vehicle using sliding mode control". Iranian Journal of Science and Technology, 28(4), 413-422, 2004.
  • Karlsson N, Andrew T, Hrovat D. "A backstepping approach to control of active suspensions". Decision and Control, Proceedings of the 40th IEEE Conference on. Vol. 5. IEEE, 2001.
  • Lin J, Kanellakopoulos I. "Adaptive nonlinear control in active suspensions". Proceedings of the 1996 IFAC, San Francisco, USA, 113-118, 1996.
  • Huang Y. "Adaptive control of nonlinear uncertain active suspension systems with prescribed performance". ISA transactions, 54, 145-155, 2015.
  • Yagiz, N, Hacioglu Y. "Backstepping control of a vehicle with active suspensions". Control Engineering Practice 16(12), 1457-1467, 2008.
  • Zhao F, Ge S, Tu F, Qin, Y, Dong, M. “Adaptive neural network control for active suspension system with actuator saturation”. IET Control Theory & Applications, 10(14), 1696-1705, 2016.
  • Ren H, Zhao Y, Chen S, Liu G. “State observer based adaptive sliding mode control for semi-active suspension systems”. Journal of Vibroengineering, 17(3), 1607, 2015.
  • Pan H, Sun W, Jing X, Gao H, Yao J. “Adaptive tracking control for active suspension systems with non-ideal actuators”. Journal of Sound and Vibration, 399, 2-20, 2017.
  • Pan H, Sun W, Gao H, Hayat T, Alsaadi F. “Constrained robust adaptive control for vehicle active suspension systems”. International Journal of Vehicle Design, 68(1-3), 5-21, 2015.
  • Bhowmik A, Tiwari A, Ginoya D, Phadke S. B. “Adaptive fault tolerant control for active suspension”. In Control, Measurement and Instrumentation (CMI), 2016 IEEE First International Conference on, pp. 386-390, 2016.
  • International Organization for Standardization. “Mechanical vibration and shock-Evaluation of human exposure to whole-body vibration-Part 1: General requirements”. The Organization, 1997.
  • Francis A, Wonham, W. “The internal model principle for linear multivariable regulators”. Applied mathematics and optimization, 2(2), 170-194 1975.
  • Serrani A, Isidori A, Marconi L. “Semi-global nonlinear output regulation with adaptive internal model”. IEEE Transactions on Automatic Control, 46(8), 1178-1194 2001.
  • Marino R, Tomei P. “Adaptive tracking and disturbance rejection for uncertain nonlinear systems”. IEEE Transactions on Automatic Control, 50(1), 90-95, 2005.
  • Ding Z. “Universal disturbance rejection for nonlinear systems in output feedback form”. IEEE Transactions on Automatic Control, 48(7), 1222-1226, 2005.
  • Nikiforov V. O. “Observers of external deterministic disturbances. I. objects with known parameters”. Automation and Remote Control, 65(10), 1531-1541 2004.
  • Chen T. Linear System Theory and Design. Oxford University Press, Inc, 1995
  • Krstic M, Ioannis K, Kokotovic P. Nonlinear and adaptive control design. Wiley 1995.
  • Du H, Li W, Zhang N. “Integrated seat and suspension control for a quarter car with driver model”. IEEE transactions on vehicular technology, 61(9), 3893-3908, 2012.
  • Sun W, Pan H, Zhang Y, Gao H. “Multi-objective control for uncertain nonlinear active suspension systems”. Mechatronics, 24(4), 318-327, 2014.
  • Van der Sande, TPJ. "Robust control of an electromagnetic active suspension system: Simulations and measurements." Mechatronics 23(2), 204-212, 2013.