4x4 Ağır hizmet araçları için pnömatik fren sistemi tepki süresinin bilgisayar destekli olarak hesaplanması ve deneysel doğrulaması

Bu çalışmanın ana hedefi, 4x4 ağır hizmet araçları için, araç testleri ile doğrulanmış ve fren tepki süresi tahminlerinde kullanılacak detaylı bir havalı (pnömatik) fren sistemi dinamik modelinin elde edilmesidir. Bu neden ile bu çalışmada, havalı fren sistemi dinamik davranışını belirleyebilmek amacıyla genel bir matematiksel model önerilmektedir. Bu amaca uygun olarak, öncelikle havalı fren sisteminin pnömatik ve mekanik alt sistemlerine ait detaylar incelenmiştir. Daha sonrasında benzetimlerde kullanılmak üzere elde edilen matematiksel ifadeler Simulink modeline uyarlanmıştır. Simulink modelinin oluşturulması esnasında sistem parametrelerinin bir kısmı literatürde bulunan temel modellerden ve/veya fren sistemine ait bileşenlerin teknik veri sayfalarından elde edilmiştir. Burada daha karmaşık bir havalı fren sistemi modellemesi amaçlandığı için daha fazla sistem parametresine ihtiyaç duyulmaktadır. Bu bilinmeyen parametreleri belirleyebilmek amacıyla, fren tepki süresi testleri kampana frenli bir 4x4 ağır hizmet aracı üzerinde gerçekleştirilmiştir. Bu testlere ait deneysel sonuçlar kullanılarak sistem modelindeki bilinmeyen parametreler ayarlanmıştır. Daha sonra elde edilen model, prototip seviyesindeki başka bir 4x4 araca uyarlanmış ve burada fren tepki süresi hesaplamaları doğrulanmıştır.

Computer aided calculation and experimental verification of response time of pneumatic brake system for 4x4 heavy duty vehicles

Main objective of this study is to obtain a detailed dynamic model of pneumatic brake system that will be verified with vehicle tests and be used for response time prediction of 4x4 heavy duty vehicles. Hence, in this study, a general mathematical model is proposed to determine the dynamic characteristics of pneumatic brake system. For this purpose, first of all the details of pneumatic and mechanical subsystems of the air brake system are investigated. After that; in order to be able to execute the simulations, mathematical equations derived are adapted to the Simulink model. When constructing the Simulink model, some system parameters are obtained from the basic models in the literature and/or are taken from the technical datasheets of the brake system components. Since a more complicated pneumatic brake system is aimed to be modeled, much more system parameters are required to be estimated. To identify those unknown parameters, response time tests were performed on a 4x4 heavy-duty vehicle equipped with wedge drum brakes. The experimental results of those tests are used to tune the system model for the unknown parameters. After that, the model obtained is adapted to  a prototype level 4x4 heavy duty vehicle and the break response time calculations are verified.

___

  • Limpert R. Brake Design and Safety, Society of Automotive Engineers Inc, 1992.
  • Day AJ. Braking of Road Vehicles, Butterworth-Heinemann, 2014.
  • Subramanian SC. Darbha S ve Rajagopal KR. Modeling the pneumatic subsystem of an S-cam air brake system, Msc Thesis, Texas A&M University, Faculty of Mechanical Engineering, 2003.
  • UN, UNECE Regulation 13. Uniform provisions concerning the approval of vehicles of categories M, N and O with regard to braking, E/ECE/324/Rev.1/Add.12/Rev.8, March 2014.
  • Subramanian SC. Darbha S, Rajagopal KR. “A diagnostic system for air brakes in commercial vehicles”, IEEE Transactions on Intelligent Transportation Systems, 7(3), 360-376, 2006.
  • Ramaratham S. A mathematical Model for air Brake Systems in the Presence of Leaks. Doctoral Dissertation, Texas A&M University, 2008.
  • Kulesza Z, Siemieniako F. “Modeling the air brake system equipped with the brake and relay valves”. Akademia Morska w Szczecinie, 24(96), 5-11, 2010.
  • He L, Wnag X, Zhang Y, Wu J, Chen L. “Modeling and simulation vehicle air brake system”. Proceedings of the 8th International Modelica Conference, 430-435, Dresden, Germany, 2011.
  • Brubaker CL. Dynamic Model of a Non-Linear Pneumatic Pressure Modulating Valve Using Bond Graphs, Doctoral dissertation, Cleveland State University, 2015.
  • Güleryüz İC, Başer Ö. “4x4 ağır hizmet araçları için pnömatik fren sistemi modellemesi”. Analizi ve Deneysel Doğrulaması, Otomatik Kontrol Türk Milli Komitesi Ulusal Toplantısı (TOK 2017), İstanbul, Türkiye, 2017.
  • Selveraj M, Mariappa S, Gayakward S. “Modeling and simulation of pneumatic brake system used in heavy commercial vehicle”, IOSR Journal of Mechanical and Civil Engineering, 11(1), 1-9, 2014.
  • Yi L, Bowen X, Bin G. “Dynamic modeling and experimental verification of bus pneumatic brake system”. Open Mechanical Engineering Journal, 9, 52-57, 2015.
  • Palanivelu S, Patil J, Jindal A. "Modeling and optimization of pneumatic brake system for commercial vehicles by model based design approach". SAE Technical Paper 2017-01-2493, 2017, doi.org/10.4271/2017-01-2493.
  • Yang F, Li G, Hua J, Li X, Kagawa T. “A new method for analysing the pressure response delay in a pneumatic brake system caused by the influence of transmission pipes”. Appl. Sci. 7, 941. 941, 2017.
  • Yang C, Chen Z, Wu X. “An experimental study on hysteresis characteristics of a pneumatic braking system for a multi-axle heavy vehicle in emergency braking situations”. Appl. Sci. 7, 799, 2017.
  • Li L, Zhang Y, Yang C, Yan B, Martinez CM. “Model predictive control-based efficient energy recovery control strategy for regenerative braking system of hybrid electric bus”. Energy Conversion and Management, 111, 299-314, 2016
  • Bravo RS, De Negri VJ, Oliveira AAM. “Design and analysis of a parallel hydraulic-pneumatic regenerative braking system for heavy-duty hybrid vehicles”. Applied Energy, 225, 60-77, 2018.
  • Gautam V, Rajaram V, Subramanian SC. “Model-based braking control of a heavy commercial road vehicle equipped with an electropneumatic brake system”. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 231(12), 1693-1708. 2017.
  • Osinenko P, Streif S. "Optimal Traction Control for Heavy-Duty Vehicles". Control Engineering Practice. Volume 69. pp. 99-111. 2017. ISSN 0967-0661. https://doi.org/10.1016/j.conengprac.2017.09.010.
  • Zheng H, Ma S, Liu Y. “Vehicle braking force distribution with electronic pneumatic braking and hierarchical structure for commercial vehicle”. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 232(4), 481-493, 2018.
  • Kluever RC, Kluever CA. Dynamic Systems: Modeling, Simulation, and Control, John Wiley & Sons, 2015.
  • Selvaraj M, Gaikwad S, Suresh AK. Modeling and Simulation of Dynamic Behavior of Pneumatic Brake System at Vehicle Level, (No. 2014-01-2494). SAE Technical Paper.
  • Güleryüz İC. Modelling Analysis and Experimental Verification of Pneumatic Brake System, MSc Thesis, İzmir Katip Çelebi University, İzmir, Turkey, 2017.
  • Göktan AG, Güney A, Ereke M, Taşıt Frenleri, İTÜ Makina Fakültesi, Otomotiv Anabilim Dalı. İstanbul, Ocak 1995.