Dokuzuncu Sınıf Kimya Dersi Öğretim Programına Yönelik Öğretmen Görüşleri: Aydın İli Örneği

Bu çalışmanın amacı, yapılandırmacı kuramı temel alarak hazırlanmış 9. sınıf kimya dersi öğretim programının uygulanmasına ilişkin kimya öğretmenlerinin görüşlerini almaktır. Tarama modelinin kullanıldığı çalışmada, 2009-2010 eğitim öğretim yılında Aydın ilinde farklı okul türlerinde görev yapan 131 kimya öğretmenine “Kişisel Bilgi Formu” ve “Öğretmenlerin Programın Uygulanmasına Yönelik Görüşleri Anketi” uygulanmıştır. Aynı zamanda görev yaptıkları okul türü dikkate alınarak gönüllü 12 öğretmenin öğretim programına ilişkin görüşleri “Görüşme Formu” ile alınmıştır. Hem anketten hem de görüşmelerden elde edilen veriler frekans ve yüzde değerleri kullanılarak analiz edilmiştir. Araştırmanın sonuçları, yenilenen öğretim programıyla beraber öğretmenlerin derslerinde kullanmış oldukları yöntem ve teknikte bir değişim olmadığını, ders kitaplarından yeterince yararlanmadıklarını, laboratuvar uygulamalarına yeterince yer vermediklerini göstermektedir. Öğretmenler bu durumun kalabalık sınıflardan, hazırbulunuşluğu yetersiz öğrencilerden, fiziki şartlardan ve zaman yetersizliğinden kaynaklandığını ifade etmişlerdir. Öğretmenlerin görüşleri 2013-2014 yılında uygulanması planlanan kimya dersi öğretim programının içeriği ve öğretmen yeterlilikleri de dikkate alınarak tartışılmıştır.

___

  • AL-AMOUSH, S. A., MARKİC, S. ve EİLKS, I. (2012). Jordanian chemistry teachers` views on teaching practices and educational reform, Chemistry Education Research and Practice, 13 (3), 314 – 324.
  • American Association for the Advancement of Science (A.A.A.S.). (1990). Project 2061-Science for All Americans. Retrieved June 26, 2006 from http://www.project2061.org/publications/ sfaa/default.htm?nav
  • ANDERSON, L. ve OLSEN, B. (2006). Investigating teachers‘ perspectives on and experiences in early career professional development, Journal of Teacher Education, 57 (4), 359-377.
  • ASH, D., ve KLUGER-BELL. B. (2000). Identifying inquiry in the K-5 classroom. Foundations. Vol. 2, Inquiry: Thoughts, Views, and Strategies for the K-5 Classroom. (pp. 79-86). Washington, DC: National Science Foundation.
  • AUSUBEL, P. D. (1978). In defence of advance organizers: a reply to the critics, Review of Educational Research, 48 (2), 251-257.
  • AYAS, A., ÇEPNİ, S., JOHNSON D. ve TURGUT, F. (1997). Kimya Eğitimi. Yök/Dünya Bankası Milli Eğitimi Geliştirme Projesi, Ankara.
  • AYDIN, A. (2010). Cumhuriyet dönemi ortaöğretim kimya öğretim programlarının esnek program ve uygulamaları açısından değerlendirilmesi, BAÜ Fen Bilimleri Enstitüsü Dergisi, 12 (2), 61-74.
  • AYDIN, A. (2010). Kimya I ders kitabının öğretmen görüşlerine göre değerlendirilmesi, Ahi Evran Üniversitesi Eğitim Fakültesi Dergisi, 11 (1), 207-224.
  • BACKUS, L. (2005). A year without procedures, The Science Teacher, 72 (7), 54-58.
  • BARIN, T. B. (2009). Orta öğretim kurumlarındaki kimya öğretmenlerinin kimya öğretimindeki sorunlarının öğretmen ve öğrenci görüşlerine göre tespiti (Erzurum ili örneği), Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Erzurum.
  • BOOTH, G. (2001). Is inquiry the answer?, Science Teacher, 68 (7), 57-59.
  • BOZKURT, O. ve OLGUN, Ö. S. (2005). Fen ve Teknoloji Eğitiminde Bilimsel Süreç Becerileri. M, Aydoğdu ve T. Kesercioğlu (Editörler), İlköğretimde Fen ve Teknoloji Öğretimi, Ankara: Anı Yayıncılık.
  • BROWN, P. L., ABELL, S. K., DEMIR, A. ve SCHMIDT, F. J. (2006). College science teachers‘ views of classroom inquiry, Science Education, 90, 784-802.
  • BRYAN, L., (2003). Nestedness of beliefs: Examining a prospective elementary teacher‘s belief system about science teaching and learning, Journal of Research in Science Teaching , 40, 835–868.
  • BÜMEN, N., ATEġ, A., ÇAKAR, E., URAL, G. ve ACAR, V. (2012). Türkiye bağlamında öğretmenlerin mesleki gelişimi: Sorunlar ve öneriler, Milli Eğitim Dergisi, 41 (194), 31-50.
  • BYBEE, R.(2000). Teaching science as inquiry, in Minstrel, J. and. Van Zee, E.H, (Eds.), Inquiring into inquiry learning and teaching in science (pp. 20–46), Wasington, DC: American Association for the Advancement of Science (AAAS).
  • CHEUNG, D. (2007, July). Confirmatory factor analysis of the attitude toward chemistry lessons scale. Proceeding of the 2nd NICE Symposium, Taipei, Taiwan.
  • CHEUNG, H. Y. (2008). Teacher efficacy: A comparative study of Hong Kong and Shanghai primary in-service teachers, The Australian Educational Researcher, 35 (1), 103-123.
  • CLARK, C. M. ve PETERSON, P. L. (1986). Teachers' thought processes. In M. C. Wittrock (Ed.), Handbook of research on teaching (3rd ed., pp. 255-296). New York: Macmillan.
  • COSTENSON, K. ve LAWSON, A. E. (1986). Why isn‘t inquiry used in more classrooms?, American Biology Teacher, 48, 150–158.
  • CZERNIAK, C. ve LUMPE, A. T. (1996). Relationship between teacher beliefs and science education reform, Journal of Science Teacher Education, 7, 247–266.
  • ÇEPNI, S. ve AYVACI, H. S. (2007). Laboratuvar destekli fen öğretimi yaklaşımları. S. Çepni (Ed.), Fen ve teknoloji öğretimi. Ankara, Pegem Yayıncılık.
  • DE JONG, O. (2007). Trends in western science curricula and science education research: A bird‘s eye view, Journal of Baltic Science Education, 6, 15–22.
  • DRİVER, R. (1988). Theory into practice II: A constructivist approach to curriculum development. In Fensham, P.J. (Eds), Development and dilemmas in science education, The Falmer Press, London, pp. 165–188.
  • DUBAN, N. (2008). İlköğretim Fen ve Teknoloji dersinin sorgulamaya dayalı öğrenme yaklaşımına göre işlenmesi: Bir eylem araştırması, Anadolu Üniversitesi, Eğitim Bilimleri Enstitüsü, Doktora Tezi, Eskişehir.
  • DUFFEE, L. ve AİKENHEAD, G.S . (1992). Curriculum change, student evaluation, and teacher practical knowledge, Science Education, 76, 493-506.
  • ERCAN, A. (2011). Kimya dersi yeni öğretim programının uygulanmasına ilişkin öğretmen görüşleri, Türk Fen Eğitimi Dergisi, 8 (4), 193-209.
  • ERNEST, P. (1989). The knowledge, beliefs and attitudes of the mathematics teacher: A model, Journal of Education for Teaching, 15 (1), 13-33.
  • ERTMER, P. A. (2005). Teacher pedagogical beliefs: The final frontier in our quest for technology integration?, Educational Technology Research and Development, 53 (4), 25
  • FENSTERMACHER G. D. ve SOLTİS J. F. (1986), Approaches to teaching, New York: Teachers College Press.
  • GIJBELS, D. ve LOYENS, M. M. S. (2009). Constructivist learning (environments) and how to avoid another tower of Babel: reply to Renkl, Instrutional Science, 37, 499–502.
  • HACKLING, M., GOODRUM, D. ve RENNIE, L. (2001). The state of science in Australian secondary schools, Australian Sciences Teachers‟ Journal, 47 (4), 12-17.
  • HANEY J. J., CZERNIAK C. M. ve LUMPE A. T. (1996). Teacher beliefs and intentions regarding the implementation of science education reform strands, Journal of Research in Science Teaching, 33, 971–993.
  • HEIN, E. G. (1991, 15-22 October). Constructivist learning theory. CECA (International Committee of Museum Educators) Conference, Jerusalem, Israel.
  • HODSON D. (1990). A critical look at practical work in school science, School Science Review, 70, 33- 40.
  • HOFSTEIN, A. ve LUNETTA, N.V. (1982). The role of the laboratory in science teaching: Neglected aspect of research, Review of Educational Research, 52 (2), 201-217.
  • HOFSTEIN, A., LEVI-NAHUM, T. ve SHORE, R. (2001). Assessment of the learning environment of inquiry- type laboratories in high school chemistry, Learning Environments Research, 4, 193–207.
  • HOFSTEIN, A., SHORE, R. ve KIPNIS, M. (2004). Providing high school chemistry students with opportunities to develop learning skills in an inquiry-type laboratory: A case study, International Journal of Science Education, 26, 47–62.
  • HOGAN, K. ve BERKOWITZ, A.R. (2000). Teachers as inquiry learners, Journal of Science Teacher Education, 11(1), 1-25.
  • JONES, M.E., GOTT, R. ve JARMAN, R. (2000). Investigations as part of the key stage 4 science curriculum in Northern Ireland, Evaluation and Research in Education, 14 (1), 23-37.
  • WALLACE, C.S. & KANG, N.(2004). An investigation of experienced secondary science teachers‘ beliefs about inquiry: An examination of competing belief sets, Journal of Research in Science Teaching, 41(9), 936-960.
  • KARAMUSTAFAOĞLU, O. ve YAMAN, S. (2006). Fen eğitiminde özel öğretim yöntemleri III. Ankara: Anı Yayıncılık.
  • KAZAK, Ö. (2010). Lise kimya ders kitaplarının bilimsel içerik açısından incelenmesi ve ders kitapları hakkında öğretmen ve öğrenci görüşlerinin belirlenmesi, Gazi Üniversitesi, Eğitim Bilimleri Enstitüsü, Yüksek Lisans Tezi, Ankara.
  • KORUKLU, N., FEYZİOĞLU, B., ÖZENOĞLU-KİREMİT, H. ve ALADAĞ, E. (2012). Öğretmenlerin tükenmişlik düzeylerinin bazı değişkenlere göre incelenmesi, Kuram ve Uygulamada Eğitim Bilimleri Dergisi, 12 (3),1823-1830.
  • KURT, S. ve YILDIRIM, N. (2011). Ortaöğretim 9. Sınıf kimya dersi öğretim programının uygulanması ile ilgili öğretmenlerin görüşleri ve önerileri, Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 29 (1), 91-104.
  • KUTU, H. ve SÖZBİLİR, M. (2011). Yaşam temelli ARCS öğretim modeliyle 9. Sınıf kimya dersi ―Hayatımızda Kimya‖ ünitesinin öğretimi, Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 30(1), 29-62
  • LAWSON, A.E., (2000). Managing the inquiry classroom: Problems ve solutions, The American Biology Teacher, 62(9), 641-648.
  • LEİ, Q. (2006). Comparison of the chemistry practical work at the University of Sydney and Zhejiang University, The China Papers, November, 17–22.
  • LOYENS, S. M. M., RIKERS, R. M. J. P. ve SCHMIDT, H. G. (2008). Relationships between students‘ conceptions of constructivist learning and their regulation and processing strategies, Instuctional Science, 36, 445–462.
  • Milli Eğitim Bakanlığı, Eğitim Araştırma ve Geliştirme Dairesi Başkanlığı. (2010). Öğrenci Başarılarının Belirlenmesi Sınavı (ÖBBS) Raporu (2009). http://earged.meb.gov.tr/dosyalar/obbs/OBBS_2009.pdf adresinden 11 Kasım 2011 tarihinde edinilmiştir.
  • Milli Eğitim Bakanlığı, Talim Terbiye Kurulu Başkanlığı. (2011). Kimya Öğretmeni Özel Alan Yeterlikleri. http://otmg.meb.gov.tr/alan_kimya_ortaogretim.html adresinden 13 Nisan 2013 tarihinde indirilmiştir.
  • MORRISON, J. A. (2012). Exploring Exemplary Elementary Teachers‘ Conceptions and implementation of inquiry science, Journal of Science Teacher Education, DOI:1007/s10972-012-9302-3.
  • NAKIBOĞLU, C., KAġMER, N., GÜLTEKIN, C.ve DÖNMEZ, F. (2010). Ön düzenleyiciler ve 9. sınıf kimya ders kitaplarında kullanımlarının incelenmesi, Ahi Evran Üniversitesi Eğitim Fakültesi Dergisi,11(2), 139-158.
  • National Research Council (NRC). (2000). Inquiry and the national science standarts. Washington, DC. National Academy Press.
  • NOVAK, J. D. (2002). Meaningful learning: The essential factor for conceptual change in limited or inappropriate propositional hierarchies leading to empowerment of learners, Science Education, 86(4), 548–571.
  • ÖNEN, F., ERDEM, A., UZAL, G. ve GÜRDAL, A. (2011). Öğretmenlerin yapılandırmacı programının uygulanabilirliğine ve alanla ilgili kitapların yeterliliğine ilişkin görüşleri: Tekirdağ örneği, Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 5(2), 115-137.
  • RIKERS, R. M. J. P., VAN GOG, T. ve PAAS, F. (2008). The effects of constructivist learning environments: a commentary, Instructional Science, 36(5-6), 463-467.
  • SAAD, R. ve BOUJAOUDE, S. (2012). The relationship between Teachers‘ knowledge and beliefs about science and inquiry and their classroom practices, Eurasia Journal of Mathematics, Science and Technology Education, 8(2), 113-128.
  • SCHNEIDER, R. M., KRAJCIK, J., ve BLUMENFELD, P. (2005). Enacting reform-based science materials: The range of teacher enactments in reform classrooms, Journal of Research in Science Teaching, 42, 283–312.
  • SCHUNK, D.H. (2012). Learning Theories: An Educational Perspective, 6th Edition: Boston, Pearson Education, Inc.
  • SPIGNER-LITTLES, D. A., ve CHALON, E. (1999). Constructivism: a paradigm for older learners, Educational Gerontology, 25, 203–210.
  • STEWART, B.Y. (1988). The surprise element of a student-designed laboratory experiment, Journal of College Science Teaching, 17, 269–270.
  • TAITELBAUM, D., MAMLOK-NAAMAN, R., CARMELI, M. ve HOFSTEIN, A. (2008). Evidence for teachers‘ change while partipating in a continuous professional development programme and implementing the inquiry a professional development programme and implementing the inquiry approach in the chemistry laboratory, International Journaal of Science Education, 30 (5), 593-617.
  • TALİM TERBİYE KURULU BAġKANLIĞI (TTKB), (2007). Ortaöğretim 9. sınıf kimya dersi öğretim programı. Ankara.
  • TALİM TERBİYE KURULU BAġKANLIĞI (TTKB), (2011). Ortaöğretim 9. sınıf kimya dersi öğretim programı. Ankara.
  • TALİM TERBİYE KURULU BAġKANLIĞI (TTKB), (2013). Ortaöğretim 9., 10., 11., 12. sınıf kimya dersi öğretim programı. Ankara.
  • TEMİZYÜREK, K. (2003). Fen öğretimi ve uygulamaları. Ankara: Nobel Yayın Dağıtım.
  • TOBIN, K., ve MCROBBIE, C. (1996). Cultural myths as constraints to the enacted science curriculum, Science Education, 80, 223 – 241.
  • TRIGWELL K., PROSSER M. ve Taylor P., (1994), Qualitative differences in approaches to teaching first year university science, Higher Education, 27, 75–84.
  • UÇAR, E. ve YEġİLYAPRAK, B. (2006) Öğrenmeden Öğretime. Yeşilyaprak, B. (Ed) Eğitim Psikolojisi. Pegema Yayıncılık, Ankara.
  • VAN DRIEL J. H., BULTE A. ve VERLOOP N., (2007). The relationships between teachers‘ general beliefs about teaching and learning and their domain specific curricular beliefs, Learning Instruction, 17, 156–171.
  • VAN DRIEL, J. H., BEİJAARD, D. ve VERLOOP, N. (2001). Professional development and reform in science education: The role of teachers' practical knowledge, Journal of Research in Science Teaching, 38, 137–158.
  • VON GLASERFELD, E., (1987). Learning as constructive activity. In Von Glaserfeld, E. (Eds), The construction of knowledge: contributions to conceptual semantics, Intersystems Publication, California, pp. 212–214.
  • WALLACE, C.S. ve KANG, N.(2004). An investigation of experienced secondary science teachers‘ beliefs about inquiry: An examination of competing belief sets, Journal of Research in Science Teaching, 41(9), 936-960.
  • WILLIAMS, M. W., PAPIERRNO, P. B., MAKEL, M. C., ve CECI, S. J. (2004). Thinking like a scientist about real –world problems: The Cornell institute for research on children science education program, Applied Developmental Psychology, 25, 107-126.
  • YERRICK, R., PARKE, H., ve NUGENT, J. (1997). Struggling to promote deeply rooted change: The ‗filtering effect‘ of teachers‘ beliefs on understanding transformational views of teaching science, Science Education, 81, 137-159.
  • YURDAKUL, B. (2004). Yapılandırmacı öğrenme yaklaşımının öğrenenlerin problem çözme becerilerine, bilişötesi farkındalık ve derse yönelik tutum düzeylerine etkisi ile öğrenme sürecine katkıları, Hacettepe Üniversitesi, Sosyal Bilimler Enstitüsü, Doktora Tezi, Ankara. YURDAKUL, B. (2005). Yapılandırmacılık. Demirel, Ö. (Ed). Eğitimde yeni yönelimler. Ankara: Pegema Yayıncılık, Cantekin Matbaası.
  • YÜKSEL, M. (2011). Eğitim ve öğretim kazanımları temelinde 9. Sınıf kimya ders kitabının incelenmesi, Selçuk Üniversitesi, Ahmet Keleşoğlu Eğitim Fakültesi Dergisi, 32, 29-48.
  • ZIMMERMAN, C. (2007). The development of scientific thinking skills in elementary and middle school, Developmental Review, 27, 172-223.
  • Teachers‟ Views about Ninth Grade Chemistry Education Program: Sample of Aydin City Burak Feyzioğlu iv
  • Course program was prepared taking constructivist theory as the basis. If the content of this theory is considered, providing a meaningful learning with course curriculum (Ausubel, 1978; Novak, 2002; Rikers, Van Gog and Paas, 2008; Gijbels and Loyens, 2009) and by taking real life situations into classrooms, interaction of learners with real life situations via activities (Hein, 1991; Uçar and Yeşilyaprak, 2006) are expected. In accordance with learners‘ interests, demands and needs it is necessary to organize physical learning environment and with cognitive activities learning process can be achieved more comfortably, cheerfully and easily (Loyens, Rikers and Schmidt, 2008). Successful implementation of the program is possible when learning-teaching process based on deduction is provided (Uçar and Yeşilyaprak, 2006) and unique learning is achieved (Yurdakul, 2005). Moreover, for effective implementation of the program it is expected that the program should have an education process that uses alternative assessment and evaluation tools that evaluates process and performance instead of results (NRC, 2000; Hofstein, Shore and Kipnis, 2004; Yurdakul, 2004; Taitelbaum, Mamlok-Naaman, Carmeli and Hofstein, 2008 ).
  • In this study, with the course program that is prepared based on constructivist theory how much the teachers are aware of the change in their roles and responsibilities, how much they adopt the program and how much the philosophy and characteristics of the program is understood was tried to be identified and some suggestions were made. It is thought that teachers‘ views would be a guide to the studies to identify the missing parts in due diligence of the implementation of the program and to meet the needs. In the meantime, in this study introducing not only 2007 course program but also 2011 and 2013 course programs may provide an idea about how efficient the reform will be in terms of meeting the needs.
  • Research Model: Teachers‘ views about implementation process were examined using survey model and quantitative and qualitative research designs were used to analyze the data. At the first phase of the study 131 chemistry teachers working in different type of schools in Aydın in 2009-2010 academic year were reached and their views were taken. In the second phase, representing each type of school, 12 voluntary teachers were interviewed in details about learning-teaching process. iv Yrd.Doç.Dr., Adnan Menderes Üniversitesi, Eğitim Fakültesi, OFMAE, Kimya Eğitimi A.B.D, Data Collection Instruments: In this study, in order to identify teachers‘ views about the chemistry course program for 9 th grade in 2007, ―Personal Information Form‖ and ―Teacher‘s Views about Implementation of the Program Questionnaire‖ and in order to obtain detailed ideas about this process ―Interview Form‖ was used as data collection instruments.
  • Data Analyses: In the analysis of data gathered from Teacher‘s Views about Implementation of the Program Questionnaire, demographic features were considered and findings related with items that were thought to have more information was given. Data was analyzed using frequency and percentage values and presented. Data gathered from interview forms was analyzed using descriptive approach. In this purpose, teachers‘ views were categorized under certain categories and summarized. Categorization was made using interview questions and data gathered at the end of interviews. Results, Conclusion and Discussion: It was seen that there was no change in methods, techniques and strategies teachers used, they did not utilize course books and activities in them enough, they did not use these activities relevant to their purpose and they did not give enough place to laboratory practices even when they did experiments, they were demonstration experiments. They give crowded classes, students lacking readiness, lack of time, lack of in service training courses and materials, and university entrance system as justification for this situation. From teachers‘ views, it was identified that in the course books at the end of each subject although there was a section providing alternative assessment and evaluation techniques, teachers did not use them relevant to their purpose and they did not give up using traditional methods in assessment and evaluation. Teachers stated that they partially associate chemistry subjects with daily life. In conclusion it was seen that in learning environments where traditional approaches continued to be used meaningful, and permanent learning cannot be given and learning based on unique research and discovery cannot be achieved. In their planning and implementations the reason why teachers do not accomplish the criteria the program requires can be related to their competencies (NRC, 2000; MEB, 2011) as well as their beliefs about the nature of the science. Teachers who perceive science as an objective knowledge that needs to be transferred to the learner think that science can only be taught by them and this can be achieved by learners accomplishing the instructions (Cheung, 2007).
  • Key Words: Chemistry Education Program, Teachers‘ ideas, implementation of the program
Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi-Cover
  • ISSN: 1300-302X
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1986
  • Yayıncı: Ondokuz Mayıs Üniversitesi Eğitim Fakültesi