Lösin Enkefalin'in Kurbağa Sinir Sistemindeki Lokalizasyonu

Amaç: Bu çalışmada, opioid peptitlerden lösin enkefalin'in kurbağa sinir dokularında immünohistokimyasal lokalizasyonunun tespit edilmesi amaçlandı. Yöntem: Kurbağaların (n=6) diseksiyonuyla beyin, omurilik ve siyatik sinir dokuları izole edildi. İndirekt immünohistokimya yöntemi ve ışık mikroskopi tekniği kullanılarak kurbağa sinir dokularında lösin enkefalin yayılışı belirlendi. Bulgular: Kurbağa beyin ve omurilik dokularında immünopozitif hücreler gözlendi. Buna göre perikaryonlar, ependima ve glial hücreler immünopozitif olarak işaretlendi. Ayrıca, siyatik sinir aksoplazmalarının çoğunda immünoreaktivite saptandı fakat, fibroblast ve Schwann hücrelerinin az bir kısmında immünoreaktivite izlendi. İncelenen deneklerin dokuları arasında immünoreaktivite kuvveti bakımından herhangi bir fark gözlenmedi. Sonuç: Bulgular, kurbağa sinir sisteminde opioid peptitlerden lösin enkefalin'in lokalize olduğuna işaret etmektedir. Bu peptitin merkezi sinir sisteminde yayılış göstermesi, nörotransmitter veya nöromodülatör rolünün olabileceğini göstermektedir.

Lösin Enkefalin\'in Kurbağa Sinir Sistemindeki Lokalizasyonu

AbstractLocalization of Leucine Enkephalin on Frog Nerve System Objective: In this study, it is aimed to determine the immunohistochemical localization of opioid peptide, leucine enkephalin in frog nerve tissues. Method: After dissection of frog (n=6) brain, spinal cord and sciatic nerves were isolated. Indirect immunohistochemical and light microscopy techniques were then applied for the distribution of leucine enkephalin in frog nerve tissues. Result: In frog nerve tissues such as brain, spinal cord immunopositive structures were observed. Accordingly, the perikaryon, eppendymal and glial cells were immünoreactive. In addition, immunopositive staining was observed in all axoplasm of the sciatic nerves, but little of fibroblast and Schwann cells were immunoreactive. It was no observed immunoreactivity difference of intensity between tissues of patterns. Conclusion: These findings show that opioid peptide, leucine enkephalin in the frog nervous system was localized. The distribution of leucine enkephalin in the central nervous system is an evidence of their neurotransmitter or neuromodulator role.

___

  • Hughes J, Smith TW, Kosterlitz HW, Fothergil LA, Morgan BA, Morris HR. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 1975;258:577—9.
  • Rang HP, Dale MM, Ritter JM. Moore PK. Pharmacology, 5‘h Ed, London; Churchill Livingstone, 2003:562—84.
  • Sneddon LU. Evolution of nociception in vertebrates: comparative analysis of lower vertebrates. Brain Res Rev 2004;46:123—30.
  • Nozaki C, Kamei J. Possible involvement of opioidergic systems in the antinociceptive effect of the selective serotonin reuptake inhibitors in sciatic nerve injured mice. Eur ] Pharmacol 2006;552:99—104.
  • Bodnar RJ, Klein GE. Endogenous opiates and behavior: 2005. Peptides 2006;27:3391—478.
  • Watson SJ, Akil H, Sullivan S, Barchas JD. Immunocytochemical localisation of Methionine enkephalin: Preliminary observations. Life Sci 1977;21:733—8.
  • Van Leeuwen FW, Pool CW, Sluiter AA. Enkephalin immunoreactivity in synaptoid elements on glial cells in the rat neural lobe. Neuroscience 1983;8:229—41.
  • Shioda S, Nakai Y, Ochiai H, Nakada H, Sano Y. Simultaneous identification of two different neuropeptides using a combined PAP and protein A gold technique in the rat neurohypophysis. ] Electron Microsc 1984;33:72—5.
  • D’Este L, Casini A, Puglisi—Allegra S, Cabib S, Tooyama I, Kimura H, Renda TG. Immunoreactive neurons in the brain of two mouse strains after incubation with an antiserum recognizing Asp—Val—Val—Gly.NH2 (DVVG), the C—terminal fragment of (D—Ala2)—deltorphin I. ] Chem Neuroanat 2002;24:189—98.
  • Martin R, Geis R, Holl R, Schafer M, Voigt KH. Coexistence of unrelated peptides in oxytocin and vasopressin terminals of rat neurohypophysis: lmmunoreactive methionin—Enkephalin, Leucine—enkephalin and cholecystokinin—like substances. Neuroscience 1983;8:213—27.
  • Kanetoh T, Sugikawa T, Sasaki I, Muneoka Y, Minakata H, Takabatake I, Fujimoto M. Identification of a novel frog RFamide and its effect on the latency of the tail—flick response of the newt. Comp Biochem Physiol Part C 2003;134:259—66.
  • Valverde E, Diaz De Rada O, Burrell MA, Rovira J, Sesma
  • P. Immunocytochemical and ultrastructural characterisation
  • Reinecke M, Heym C, Forssmann WG. Distribution
  • patterns and coexistence of neurohormonal peptides (ANP,
  • Çamlica Y, Aşkin A, Çömelekoğlu Ü. Evidence for the
  • involvement of an opioid system in sciatic nerve of Rana
  • Aşkin A, Çamlica Y, Çömelekoğlu Ü. Opioid peptides as
  • possible neuromodulators in the frog peripheral nerve
  • Guglielmotti V, Cristino L, Sada E, Bentivoglio M. The
  • epithalamus of the developing and adult frog: Calretinin
  • Kuljis RO, Karten HJ . Laminar organization of peptide—like
  • immunoreactivity in the anuran optic tectum. ] Comp
  • Merchenthaler I, Lazar G, Maderdrut JL. Distribution of
  • proenkephalin derived peptides in the brain of Rana esculanta. ] Comp Neurol 1989;281(1):23—39.
  • Hirai K, Katayama Y. Methionine enkephalin
  • presinaptically facilitates and inhibits bullfrog sympathetic ganglionic transmission. Brain Res 1988;448:299—307.
  • Kozicz T, Lazar G. Colocalization of GABA, enkephalin
  • and neuropeptide Y in the tectum of the green frog Rana
  • Hajek I, Teisinger J, Sykova E. The effect of opioids and of
  • naloxone on Na“, K+ adenosine triphosphatase activity in
  • Stevens CW, Rothe KS. Supraspinal administration of
  • opioids with selectivity for p, 5 and K opioid receptors
  • Stevens CW, Martin KK, Stahlheber BW. Nociceptin
  • produces antinociception after spinal administration in
  • Cheng PY, Svingos AL, Wang H, Clarke CL, Jenab S,
  • Beczkowska IW, Inturrisi CE, Pickel VM. Ultrastructural immunolabeling shows prominent presinaptic vesicular localization of ö opioid receptor within both enkephalin and nonenkephalin containing axon terminals in the superficial layers of the rat cervical spinal cord. ] Neurosci 1995;15(9):5976—88.
  • CaIratu MR, Dubois JM, Chieppa DM. Block of sodium 27. Mizuta K, Fujita T, Nakatsuka T, Kumamoto E. Inhibitory current in myelinated nerve fibre with enkephalins. effects of opioids on compound action potentials in frog Neurapharmacalagy1982;21:619—23. sciatic nerves and their chemical structures. Life Sci 2008;83:198—207.
  • Frank GB, Sudha TS. Effects of enkephalin, applied intracellularly, on action potentials in vertebrate A and C nerve fibre axons. Neuropharmacology 1987;26(1):61—6.