İyon Kanallarını Hedef Alan İnsektisitler

Türkçe Özet: İnsektisitler, başta tarım olmak üzere birçok alanda yaygın olarak kullanılan böcek öldürücü kimyasal maddelerdir. İnsektisitlerin böcekler üzerine etkileri çeşitli mekanizmalar ile olabilmektedir. Hücrede yaşamsal öneme sahip olan iyonların hücreye giriş-çıkışını kontrol etmede görev alan iyon kanalları, hücre zarına yerleşmiş olan transmembran proteinler olup, insektisitlerin böceklerdeki öldürücü etkisi için özgül bölgeleri oluştururlar. Son yıllarda yapılan çalışmalar insektisitlerin etki ettikleri fizyolojik yolların memelilerde de benzer olabileceğini ve insan sağlığını tehdit edebileceğini göstermektedir. Bu derlemede, hücre zarındaki iyon kanallarını hedef alan insektisitler ve etki mekanizmaları incelenmiştir.

İyon Kanallarını Hedef Alan İnsektisitler

AbstractInsecticides Targeting Ion Channels Insecticides are chemical substances that have been widely used against insects in many areas, particularly in agriculture. Insecticides show their effect on insects with different modes of actions. Ion channels which control input and output of vital ions to the cell, are transmembrane proteins located in the cell membrane and form the specific sites for the killing effects of insecticides on insects. Recent studies have shown that the modes of action of insecticides could be similar to the physiological pathways in mammals and insecticides can threaten human health. In this review, the insecticides targeted to ion channels in the cell membrane and mechanisms of their action were examined.

___

  • l. Raymond-DelpechV, Matsuda K, Sattelle BM, Rauh JJ, Sattelle DB. Ion channels: molecular targets of neuroactive insecticides. Invert Neurosci 2005;5(3- );119—33.
  • Scharf ME. Neurological effects of insecticides. In: Pimental D Eds: ,Encyclopedia of Pest Management, New York, Marcel-Dekker, 2003:1-5.
  • Zlotkin E. The insect voltage-gated sodium channel as target ofinsecticides. Annu Rev Entomol l999;44 (l):429- Narahashi T. Neuroreceptors and ion channels as the basis for drug action: past, present, and future. The Journal of Pharmacology and Experimental Therapeutics 2000;294 (1)21-26.
  • Salgado VL. Slow voltage-dependant block of sodium channels in crayfish nerve by dihydropyrazole insecticides. Mol Pharmacol l992;4l(l): 120-6. ll. Nauen R, Bretschneider T. New modes of action of insecticides. Pesticide Outlook 2002;13(6):24l-5.
  • Bloomquist JR. Chloride channels as tools for developing selective insecticides. Archives of Insect Biochemistry Cleland TA. Inhibitory glutamate receptor channels. Mol Neurobiol 1996;13(2):97-136.
  • Cully DF, Wilkinson H, Vassilatis DK, Etter A, Arena JP. Molecular biology and electrophysiology of glutamate- Wolstenholme AJ. Glutamate-gated chloride channels. Dent JA, Smith MN, Vassilatis DK, Avery L. The genetics of ivermectin resistance in Caenorhabditis elegans. Proc Shan Q, Haddrill JL, Lynch JW. Ivermectin, an unconventional agonist of the glycine receptor chloride Lynagh T, Webb TI, Dixon CL, Cromer BA, Lynch JW. Molecular determinants of ivermectin sensitivity at the Karlin A. Emerging structure of the nicotinic acetylcholine receptors. Nature Rev Neuroscience 2002;3
  • Franzini-Armstrong C, Protasi F, RameshV. Comparative ultrastructure of CaZ+ release units in skeletal and cardiac muscle. Ann N YAcad Sci 1998;853:20-30.
  • Inui M, Saito A, Fleischer S. Purification of the ryanodine receptor and identity with feet structures of junctional Wagenknecht T, Grassucci R, Frank J, Saito A, Inui M, Fleischer S. Three dimensional architecture of the Serysheva 11. Structural insights into excitation- contraction coupling by electron cryomicroscopy. Biochemistry (Mosc) 2004;69(ll):l226-32.
  • Lahm, GP, Myers BJ, Selby TP, Stevenson TM. PCT Int. Appl. 2001070671, 2001. Chem Abstr 2001 ;135:272754.
  • Dekeyser MA. Acaricide mode of action. Pest Manag Sci ;61(2):103—10. Bloomquist JR. Ion channels as targets for insecticides. Annu Rev Entomol 1996;41:163—90.