Kavramsal Tasarımda Zihin Haritalama ve Trız Kullanımı

Sistematik Tamam tüm otoritelerce en çok bilinen ve kullanılan mühendislik tasarım yaklaşımdır. Burada tasarını işlemi; ihtiyaç belirleme, kavramsal tasarım, şekil ve detay tasarımları olarak gelişir. Kavramsal tasarım bu işlemdeki en önemli aşamadır. Çünkü bu süreçte belirlenen çözümler, tüm tasarım işlemini ve dolayısı ile ürün maliyetini oldukça etkiler. Burada; temel problemler belirlenir, fonksiyon yapıları geliştirilir, çözüm ilkeleri aranır ve birleştirilir. İşlem, temel bir çözüm (kavram) ile son bulur. Bu işlemin uzun sürmesi ve yaratıcı çözümlerin zor bulunması bu alandaki başlıca sorunlar arasındadır. Teorik çalışmalar bu tür sorunların yaratıcı problem çözme yöntemleri ile giderilebileceğini göstermiş ve bunlardan zihin haritalama ile TRIZ (Yaratıcı Problem Çözme Teorisi) seçilmiştir. Zihin haritalama; bir konuyu zihinde kalıcı yapma ve yaratıcı düşünme sağlar. Dolayısı, ile problemi daha iyi anlama ve çözmeyi kolaylaştırır. TRIZ ise yaratıcı, yenilikçi ve özgün problem çözme sağlar. Problemlere hızlı ve yenilik düzeyi yüksek tasarım çözümleri sunabilir. Bu araştırmada geliştirilen yaklaşım kavramsal tasarını işleminde zihin haritalama ve TRIZ yöntemlerinin birlikte kullanımını mümkün kılar. Burada TRIZ problem belirleyici ve çözücü olarak kullanılmıştır. Zihin haritalama ise tasarımı daha kolay yapar. Böylece kısa sürede ve yaratıcılık düzeyi yüksek kavramsal tasarım çözümleri sağlayan bir yaklaşım geliştirilmiştir. Bu yaklaşım basit bir delgeç tasarımında uygulanmış ve oldukça iyi / özgün bir çözüm bulunmuştur.

___

  • 1- Maria C. Yang, "Design Methods, Tools, and Outcome Measures: A Survey of Practitioners", ASME Conf. Proc. (2007), 217.
  • 2- Birkhofer, H., "The Future of Design Methodology", London, UK: Springer; 1 st Edition, (2011), p. 1-314.
  • 3- T. Tomiyama, P. Gu, Y. Jin, D. Lutters, Ch. Kind, F. Kimura, Design methodologies: Industrial and educational applications, CIRP Annals - Manufacturing Technology, 58(2) (2009), 543-565.
  • 4- Xu, C., Computational Foundations For Computer Aided Conceptual Design of Multiple Interaction-State Mechatronic Devices, Doctoral Dissertation, USA, 2005.
  • 5- Kurtoglu, T. , Turner, I., Y. and Jensen, D., C., A functional failure reasoning methodology for evaluation of conceptual system architectures, Research in Eng. Design, 21(4) (2010), 209-234.
  • 6- Pahl, G., Beitz, W., Feldhusen, J. and Grote, K. H., Engineering Design — A Systematic Approach, Springer Verlag, 3. Baskı, London, UK , 2007.
  • 7- Chong, Y., T., Chen, C.-H. and LeongRes , K.F., A heuristic-based approach to conceptual design, Research in Engineering Design, 20 (2009), 97-116.
  • 8- Li, W., Li, Y., Wang, J. and Liu, X., The process model to aid innovation of products conceptual design, Expert Systems with Applications, 37 (2010), 3574-3587.
  • 9- Chang, X., Sahin, A. and Terpenny, J., An ontology-based support for product conceptual design", Robotics and Computer-Integrated Manufacturing, 24 (2008), 755— 762.
  • 10- Malak, R., Aughenbaugh J., M. and Paredis C., Multi-attribute utility analysis in set-based conceptual design, Computer-Aided Design 41 (2009), 214-227.
  • 11- Christophe, F., Bernard, A. and Coatanü., t., RFBS: A model for knowledge representation of conceptual design, CIRP Annals —Manufacturing Technology, 59 (2010), 155— 158.
  • 12- Zhang, Z. and Chu, X., A new approach for conceptual design of product and maintenance, International Journal of Computer Integrated Manufacturing, 23: 7 (2010), 603 - 618.
  • 13- Uflacker M. and Zeier, A., A semantic network approach to analyzing virtual team interactions in the early stages of conceptual design, Future Generation Com. Systems, 27 (2011), 88-99.
  • 14- Badke-Schaub, P., Daalhuizen, J. and Roozenburg, N., "Towards a Designer-Centred Methodology: Descriptive Considerations and Prescriptive Reflections", In: The Future of Design Methodology book. ed. / Herbert Birkhofer. London, UK: Springer, (2011), 177-196.
  • 15- Nakagawa, T., "Creative Problem-Solving Methodologies TRIZ/USIT: Overview of My 14 Years in Research, Education, and Promotion", The Bulletin of the Cultural and Natural Sciences, Osaka Galcuin University, 64 (2012), 1-5.
  • 16- Genrich Altshuller, TRIZ keys to technical innovation, Technical Innovation Center, INC. WORCESTER, MA, 2005.
  • 17- Kucharavy, D., Theoretical Grounding and Principles of TRIZ, INSA, Laboratory of Engineering Design, Graduate School of Science and Technology, Strasbourg, 2006.
  • 18- Changqing, G., Creative conceptual design ideas can be gotten with TRIZ methodology, Proc. of the TRIZ Conference, School of Mechanical Engineering, Shandong University, Sinan, 2005.
  • 19- Rantanen, K. and Domb, E., Simplified TRIZ: new problem-solving applications for engineers & manufacturing professionals, CRC Press, USA, (2002), 7-8.
  • 20- Fresner, J.,Jantschgi, J., Birkel, S., Barnthaler, J. and Krenn, C., The theory of inventive problem solving (TRIZ) as option generation tool within cleaner production projects, Journal of Cleaner Production, 18 (2010), 128-136.
  • 21- Butdee, S. and Vignat, F., TRIZ method for light weight bus body structure design, Journal of achievements in Materials and Manufacturing Engineering, 2, 31 (2008), 456-462. 22- Kim, I., 40 Principles as a Problem Pinder, Technical Report, Korea, 2004.
  • 23- Prickett, P. and Aparicio, I., The development of a modified TRIZ Technical System ontology, Computers in Industry, 63 (2012), 252-264.
  • 24- Vezzetti, E., Moos, S., and Kredi, S., A product lifecycle management methodology for supporting knowledge reusein the consumer packaged goods domain, Computer-Aided Design, 43 (2011), 1902-1911.
  • 25- Li, Z., Tate, D., Lane, C. and Adams, C., A framework for automatic TRIZ level of invention estimation of patents using natural language processing, knowledge-transfer and patent citation metrics, Computer-Aided Design, 44 (2012), 987-1010.
  • 26- Li, Te-S. and Huang, H.-H. Applying TRIZ and Fuzzy AHP to develop innovative design for automated manufacturing systems, Expert Systems with Applications, 36 (2009) 8302— 8312.
  • 27- Nix A., A., Sherrett B. and Stone R.B., A Function Based Approach to TRIZ, ASME Conf. Proc., (2011), 285.
  • 28- Hirtz, J. et al., A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts, Research in Engineering Design, 13(2) (2002), 65-82.
  • 29- Kokotovich, V., Problem analysis and thinking tools: an empirical study of non-hierarchical mind mapping, Design Studies, 29 (2008), 49-69.
  • 30- Lin, C.-C. and Shih, D.-H., "Mind Mapping: A Creative Development in Industrial Engineering Education", Wireless Communications, Networking and Mobile Computing, 2009. WiCom '09, 5th International Conference on, vol., no., pp.1-4, 24-26 Sept. 2009.
  • 31- Eggermont, M., Brennan, R. and Freiheit, T., "Improving A Capstone Design Course Through Mindmapping, Advances in Engineering Education", Volume 2, Number 1, Spring 2010.
  • 32- Chik, V., Plimmer, B. and Hosking, J., "Intelligent mind-mapping", In Proc. of the 19th Australasian conf. on Computer-Human Interaction: Entertaining User Interfaces (OZCHI '07). ACM, New York, NY, USA, (2007), 195-198.
  • 33- Chen J., "The using of mind map in concept design", Computer-Aided Industrial Design and Conceptual Design, CAID/CD 2008, 9th Int Conf. on, vol., no., 1034-1037 (2008), 22- 25
  • 34- Salah F. and Abdalla, H., "A knowledge-based system for enhancing conceptual design", Int. J. Computer Applications in Technology, Vol. 40, 23-36 (2011), Nos. 1/2.
  • 35- Buzan, T., The Mindmap Book, BBC Books, London, 1993.