GEOCHEMICAL CHARACTERISTICS OF LATERITES: THE AILIBALTALU DEPOSIT, IRAN

Alibaltalu laterite deposit is located ~20 km northeast of Shahindezh, south of West-Azarbaidjanprovince (NW of Iran). This deposit is developed as stratiform lenses along the boundary ofElika dolomites (Triassic) and Shemshak sandstones (Jurassic). The distribution fashion ofminerals such as boehmite, diaspore, kaolinite, muscovite-illite, rutile, anatase, hematite andgoethite in this deposit was accompanied by the development of four types of ore facies: (1)ferrite; (2) laterite; (3) bauxitic kaolinite; and (4) kaolinitic bauxite. Petrographically, the oresshow conglomeratic, rounded-granular, veinlet, colloform, pelitomorphic, pseudo-porphyritic,nodular, and spongy textures. Comparison of distribution pattern of elements along a selectiveprofile across the deposit reveals that ferrugenization-deferrugenization mechanism played aprominent role in distribution of Al, Si, Ti, HFSE, LREEs, HREEs, U, and Th during weatheringprocesses. Distribution pattern of REEs normalized to chondrite indicates a poor differentiationof LREEs from HREEs and generation of poor negative Eu anomaly during the evolution of thisdeposit. These aspects along with ratios of Al2O3/TiO2and intense differentiation of Al from Fein the course of weathering processes may indicate a mafic protolith for the deposit.Geochemical consideration of low-mobile elements demonstrates that this deposit is likelyresulted from alteration and weathering of basaltic to andesitic rocks. By regarding to thedistribution mode of elements such as Ni, Cr, Zr, and Ga within the ores, it can be deduced thatthis deposit was initially formed authigenically and then later was contaminated by other rockmaterials during erosion and transportation from its original place to the present site. 

___

  • Abedini, A., Calagari, A.A. 2013a. Rare earth elements geochemistry of Sheikh-Marut laterite deposit, NW Mahabd, West-Azarbaidjan province, Iran. Acta Geologica Sinica-English Edition 87, 176–185.
  • Abedini, A., Calagari, A.A. 2013b. Geochemical characteristics of Kanigorgeh ferruginous bauxite horizon, West-Azarbaidjan province, NW Iran. Periodico di Mineralogia 82, 1–23.
  • Aleva, G.J.J., 1994. Laterites: Concepts, Geology, Morphology and Chemistry. ISIRC, Wageningen, 169p.
  • Figure 15- Position of the ores of the studied profile on a trivariate plot of Cr-Ga-Zr (Balasubramaniam et al., 1987).
  • Balasubramaniam, K.S., Surendra, M., Kumar, T.V. 1987. Genesis of certain bauxite profiles from India. Chemical Geology 60, 227–235.
  • Annelles, R.N., Arthurton, R.S., Bazely, R.A., Davies, R.G. 1975. E3-E4 Quadrangle, 1:100 000 scale geological Mmap and explanatory text of Qazvin and Rasht. Geological Survey of Iran, Tehran.
  • Bardossy, G. 1982. Karst Bauxites. Elsevier Scientific, Amsterdam, 441p.
  • Bardossy, G.Y., Aleva, G.Y.Y. 1990. Lateritic Bauxites. Akademia, Kiado Budapest, 646p.
  • Berberian, M., King, G.C.P. 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18, 210–265. Boulange, B. 1984. Les formation bauxitigues lateriques de Cote d Ivoire. Travaux et Doduments ORSTOM, Paris 175, 341p.
  • Boulange, B., Colin, F. 1994. Rare earth element mobility during conversion of nepheline syenite into lateritic bauxite at Passa Quatro, Minais Gerais, Brazil. Applied Geochemistry 9, 701–711.
  • Boulange, B., Bouzat, G., Pouliquen, M. 1996. Mineralogical and geochemical characteristics of two bauxitic profiles, Fria, Guinea republic. Mineralium Deposita 31, 432–438.
  • Braun, J.J., Pagel, M., Herbillon, A., Rosin, C. 1993. Mobilization and redistribution of REEs and Th in a syenitic lateritic profile: A mass balance study. Geochimica et Cosmochimica Acta 57, 4419–4434.
  • Calagari, A.A., Abedini, A. 2007. Geochemical investigations on Permo-Triassic bauxite deposit at Kanisheeteh, east of Bukan, Iran. Journal of Geochemical Exploration 94, 1–18.
  • Esmaeily, D., Rahimpour-Binab, H., Esna-Ashari, A., Kananian, A. 2010. Petrography and geochemistry of the Jajarm karst bauxite ore deposit, NE iran: Implications for source rock material and ore genesis. Turkish Journal of Earth Science 19 (2), 267–284.
  • Fernandez-Caliani, J.C., Cantano, M. 2010. Intensive kaolinization during a lateritic weathering event in southwest Spain: Mineralogical and geochemical inferences from a relict paleosol. Catena 80, 23–33.
  • Hao, X., Leung, K., Wang, R., Sun, W., Li, Y. 2010. The geomicrobiology of bauxite deposits. Geoscience Frontiers 1, 81–89.
  • Hayashi, K., Fujisawa, H., Holland, H.D., Ohmoto, H. 1997. Geochemistry of sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta 61, 4115–1437.
  • Henderson, P. 1984. Rare Earth Element Geochemistry. Elsevier, Amsterdam, 510p.
  • Hill, I.G., Worden, R.H.G., Meighan, I.G. 2000. Geochemical evolution of a paleolaterite: the interbasaltic formation, northern Ireland. Chemical Geology 166, 65?84.
  • Kanazawa, Y., Kamitani, M. 2006. Rare earth minerals in the world. Journal of Alloy Compounds 408?412, 1339?1343.
  • Karada¤, M., Küpeli, S., Ar›k, F., Ayhan, A., Zedef, V., Doyen, A. 2009. Rare earth element (REE) geochemistry and genetic implications of the Mortas bauxite deposit (Seydisehir/Konya- southern Turkey). Chemie der Erde- Geochemistry 69, 143–159.
  • Kurtz, A.C., Derry, L.A., Chadwick, O.A. 2000. Refractory element mobility in volcanic soils. Geology 28, 683–686.
  • Laskou, M., Economou-Eliopoulos, M. 2007. The role of micro-organisms on the mineralogical and geochemical characteristics of the Parnassos- Ghiona bauxite deposits, Greece. Journal of Geochemical Exploration 93, 67–77.
  • Ma, J., Wei, G., Xu, Y., Long, W., Sun, W. 2007. Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, south China. Geochimica et Cosmochimica Acta 71, 3223–3237.
  • Mameli, P., Mongelli, G., Oggiano, G., Dinelli, E. 2007. Geological, geochemical and mineralogical features of some bauxite deposits from Nurra (western Sardinia, Italy): insights on conditions of formation and parental affinity. International Journal of Earth Sciences 96, 887–902.
  • Marques, J.J., Schulze, D.G., Curi, N., Mertzman, S.A. 2004. Trace element geochemistry in Brazilian Cerrado soils. Geoderma 121, 31–43.
  • Meshram, R.R., Randive, KR. 2011. Geochemical study of laterites of the Jamnagar district, Gujarat, India: implications on parent rock, mineralogy and tectonics. Journal of Asian Earth Sciences 42, 1271–1287.
  • Mutakyahwa, M.K.D., Ikingura, J.R., Mruma, A.H. 2003. Geology and geochemistry of bauxite deposits in Lushoto District, Usambara Mountains, Tanzania. Journal of African Earth Sciences 36, 357–369.
  • Ndjigui, P., Bilong, P., Bitom, D., Dia, A. 2008. Mobilization and redistribution of major and trace elements in two weathering profiles developed on serpentinites in the Lomie ultramafic complex, southeast Cameroon. Journal of African Earth Sciences 50, 305–328.
  • Newman, A.D.C. 1987. Chemistry of Clay and Clay Minerals. Mineralogical Society, Monograph 6, 480 p.
  • Nyakairu, G.W.A., Koeberl, C. 2001. Mineralogical and chemical composition and distribution of rare earth elements in clay rich sediments from Central Uganda. Geochemical Journal 35, 13–28.
  • Oh, N.H., Richter, D.D. 2005. Elemental translocation and loss from three highly weathered soil- bedrock profiles in the southeastern United States. Geoderma 126, 5–25.
  • Plank, T., Langmuir, C.H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology 145, 325–394.
  • Retallack, G.J. 2010. Lateritization and bauxitization events. Economic Geology 105, 655–667.
  • Rollinson, H. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific and Technical, 352p.
  • Roy, P.D., Smykatz-Kloss, W. 2007. REE geochemistry of the recent playa sediments from the Thar Desert, India: an implication to playa sediment provenance. Chemie der Erde- Geochemistry 67, 55–68.
  • Sanematsu, K., Moriyama, T., Sotouky, L., Watanabe, Y. 2011. Mobility of REEs in basalt derived laterite at the Bolaven plateau, Southern Laos. Resource Geology 61, 140–158.
  • Schellmann, W. 1994. Geochemical differentiation in laterite and bauxite formation. Catena 21, 131–143.
  • Schroll, E., Sauer, D. 1968. Beitrag zur Geochemie von Titan, Chrom, Nikel, Cobalt, Vanadium und Molibdan in Bauxitischen gestermen und problem der stofflichen herkunft des Aluminiums. Travaux de ICSOBA 5, 83–96.
  • Stöcklin, J. 1968. Structural history and tectonics of Iran, a review. American Association of Petroleum Geologists Bulletin 52 (7), 1229–1258. Taylor, S.R., McLennan, S.M. 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312p.
  • Temur, S., Kansun, G. 2006. Geology and petrography of the Masatdagi diasporic bauxites, Alanya, Antalya, Turkey. Journal of Asian Earth Sciences 27, 512–522.
  • Valeton, I. 1972. Bauxites. Elsevier, 226 p.
  • Vollmer, T. 1987. Zur Geologie des nordlichen Zentral- Elburz zwischen Chalus- und Haraz-Tal, Iran. Mitteilungen des Geologisch Paläontologischen Instituts der Universitat of Hamburg 63, 1–125.
  • Walter, A.V., Nahon, D., Flicoteaux, R., Girard, J.P., Melfi, A. 1995. Behaviour of major and trace elements and fractionation of REE under tropical weathering of typical weathering of typical apatite- rich carbonatite from Brazil. Earth and Planetary Science Letters 303, 591–601.
  • Winchester, J.A., Floyd, P.A. 1977. Geochemical discrimination of diferent magma series and their diferentiation products using immobile elements. Chemical Geology 20, 325–343.
  • Yang, R.D., Wang, W., Zhang, X., Liu, L., Wei, H., Bao, M., Wang, J. 2008. A new type of rare earth elements deposit in weathering crust of Permian basalt in western Guizhou, NW China. Journal of Rare Earths 26 (5), 753–758.