Determination of the origin and recharge process of water resources in Salda Lake Basin by using the environmental, tritium and radiocarbon isotopes (Burdur/Turkey)

The Salda Lake basin which is in the southwestern Turkey is an important water body in view of environmental values. We used stable isotopes (δD and δ18O), δ3H and 14C composition of the water samples to understand recharge process effective in the groundwater and lake water. Water samples were collected in dry and wet periods and the stable isotope (δD and δ18O) and radiogenic isotope (14C) analysis were made in the basin. The δ18O contents of groundwater and lake water ranged from -9,94‰ to 1,18‰ in dry period and from -10,24‰ to 0,30‰, in wet period. δD contents of groundwater and lake water varied from -67,42‰ to 1,20‰ and from -64,51‰ to -2,80‰, in dry and period wet respectively. The stable isotope data of samples indicate a meteoric origin for all samples. According to stable isotope data, groundwater samples seem to be recharged from higher elevations whereas the lake water is recharged from low elevations. The tritium (δ3H) content of the water samples ranges from 1.04 to 4.49 TU and from 1.91 to 4.18 TU in the dry period and wet period respectively. Long-term δ3H observations are required to determine whether these δ3H signals are associated with young recharge or with the groundwater with long residence time. In addition, the 14C activities of the samples vary between 90 pmc and 110 pmc for Salda Lake waters and 530 pmc and 5990 pmc for the groundwater.

___

  • Afşin, M., Erdoğan, N., Gürdal, H., Gürel, A., Onak, A., Oruç, Ö., Kavurmacı, M., Durukan, G. 2007. İç Anadolu’daki Sıcak ve mineralli sular ve travertenlerin hidrojeokimyasal ve izotopik incelenmesi ve suların tıbbi ve biyolojik iklimlendirme değerlendirmesi. TÜBİTAK- ÇAYDAG, Proje No: 104Y197, Aksaray.
  • Aggarwal, P. K., Basu, A. R., Poreda, R. J., Kulkarni, K. M., Froehlich, K., Tarafdar, S. A., Ahmed, S. R. 2000. A report on isotope hydrology of groundwater in Bangladesh: implications for characterization and mitigation of arsenic in groundwater. International atomic energy agency-TC project BGD/8/016, 64.
  • Appelo, C.A.J., Postma, D. 2005. Geochemistry, Groundwater and Pollution. Rotterdam: A.A. Balkema.
  • Bayarı, S., Özyurt, N., Kilani, S. 2005. “Konya Kapalı Havzasının Yeraltı Sularında Karbon-14 Yaş Dağılımı”, II. Ulusal Hidrolojide İzotop Teknikleri Sempozyumu, 26-30 Eylül 2005, Gümüldür, İzmir, 147-166.
  • Baykal, B. B., Gönenç, I.E., Meric, M., Tanik, A., Tunay, O. 1996. ``An alternative approach for evaluation of lake water quality: Lake Sapanca ± a case study from Turkey’’, Water Science and Technology Vol. 34 No. 12, pp. 73-81.
  • Busenberg, E., Plummer, L.N. 1993. Concentrations of chlorofluorocarbons and other gases in groundwater at Mirror Lake, New Hampshire. In: Morganwalp, D.W., Aronson, D.A. (Eds.), USGS Toxic Substances Hydrology Program Technical Meeting, Colorado Springs, CO.
  • Çaldırak, H., Kurtuluş, B. 2018. Evidence of Possible Recharge Zones for Lake Salda (Turkey). Journal of the Indian Society of Remote Sensing. Springer.
  • Clark, I., Fritz, P. 1997. Environmental isotopes in hydrogeology. Lewis, Boca Raton, FL, s. 1-328
  • Craig, H. 1961. Isotopic variations in meteoric waters. Science 133, 1833-1834.
  • Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16, 436-468.
  • Dilsiz, C. 2006. Türkiye’nin güneybatısındaki Pamukkale hidrotermal sahasının hidrokimyasal ve izotopik verilere dayanan kavramsal hidrodinamik modeli. Hidrojeoloji Dergisi 14: 562-572.
  • Erguvanlı, K., Yüzer, E. 1987. Yeraltı Suyu Jeolojisi. İTÜ Maden Fakültesi, yayın no: 23, İstanbul, 339p.
  • Güner, F.G., Güner, I.N. 2002. Sakarbaşı Karstik Kaynaklarının (Çifteler - Eşkişehir) Hidrojeoloji ve Çevresel İzotop Yöntemleriyle Hidrojeolojisinin Belirlenmesi, Hidrolojide İzotop Tekniklerinin Kullanımı Sempozyumu 21- 25 Ekim 2002, Adana-Türkiye, sayfa: 199-213.
  • Gupta, S.K., Deshpande, R.D., 2005. Groundwater Isotopic Investigations in India: What has been Learned? Curr. Sci. 89(5):826-830.
  • Kazancı, N., S. Girgin, M. Dügel, On the limnology of Salda Lake, a large and deep soda lake in southwestern Turkey: future management proposals, Aquatic Conservation: Marine and Freshwater Ecosystems 14: 151-162, 2004.
  • Lise, Y., Gülle, İ., Kesici, E., Dişli, E., Akarsu, F., Küçükala, A., Çalışkan, B.K., Gül, S. 2013. Salda Gölü Sulak Havzası Biyolojik Çeşitlilik Araştırması, Orman ve Su Yönetimi Bakanlığı, Doğa Koruma ve Milli Parklar Genel Müdürlüğü.
  • Makwe, E., Chup, C.D. 2013. Seasonal Variation in Physico-Chemical Properties of Groundwater Around Karu Abattoir, Ethiopian Journal of Environmental Studies and Management Vol. 6 No.5, 489-497.
  • Merlivat, L., Jouzel, J. 1979. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. Journal of Geophysical Research: Oceans 84(C8):5029-5033.
  • Mokadem, N., Demdoum, A., Hamed, Y., Bouri, S., Hacı, R., Boyce, A., Laouar, R., Sâad, A. 2017. Hydrogeochemical and stable isotope data of groundwater of a multi-aquifer system: Northern Gafsa basin–Central Tunisia. Journal of African Earth Sciences 114, 174-191.
  • Ngabirano, H., Byamugisha, D., Ntambi, E. 2016. Effects of Seasonal Variations in Physical Parameters on Quality of Gravity Flow Water in Kyanamira Sub-County, Kabale District, Uganda. Journal of Water Resource and Protection 8, 1297-1309.
  • Piper, A. M. 1944. A Graphic Procedure in Geochemical Interpretation of Water Analyses, American Geophysical Union Transactions 25; 914-923.
  • Ranjan R.K., Ramanathan A.L., Parthasarthy P., Kumar A. 2013. Hydrochemical characteristics of groundwater in the plains of Phalgu river in Gaya, Bihar, India. Arab J Geosci 6: 3257–3267.
  • Russell, M.J., Ingham, J.K., Zedef, V., Maktav, D., Sunar, F., Hall, A.J. 1999. Search for Signs of Ancient Life on Mars: Expectations from Hydromagnesite Microbialites, Salda Lake, Turkey. Journal of the Geological Society of London, Vol. 156, No. 5, 1999, pp. 869-888.
  • Schlosser, P., Stute, M., Sonntag, C., Munnich, K.O. 1988. Tritiogenic 3He in shallow groundwater. Earth and Planetary Science Letters 94:245-256.
  • Subyani, A.M. 2004. Use of chloride-mass balance and environ- mental isotopes for evaluation of groundwater recharge in the alluvial aquifer, Wadi Tharad, west Saudi Arabia. Environmental Geology (46):741–749.
  • Şahinci, A. 1991. Doğal Suların Jeokimyası, Reform Baskısı, bölüm 2., s. 33, İzmir.
  • Şenel, M., Selçuk, H., Bilgin, ZR, Şen, AM, Karaman, T., Dinçer, MA, Durukan, E., Arbas, A., Örçen, S., Bilgi, C. 1989. Çameli (Denizli) - Yeşilova (Burdur) - Elmalı (Antalya) ve kuzeyinin jeolojisi. Maden Tetkik ve Arama Genel Müdürlüğü Rapor no: 9429 Ankara (unpublished).
  • Şenel, M., Akyürek, B., Can, N., Aksay, A., Pehlivan, N., Bulut, V., Aydal, N. 1997. 1: 100 000 ölçekli Türkiye Jeoloji Haritası, Denizli M23 (J9), Maden Tetkik ve Arama Genel Müdürlüğü yayını, Ankara.
  • Varol, S., Davraz, A., Şener, Ş., Şener, E., Aksever, F., Kırkan, B., Tokgözlü, A. 2017. Salda Gölü Sulak Alanının Hidrojeolojisi ve Hidrojeokimyasal Özelliklerinin İzlenmesi ve Kirlenme Durumunun Tespiti, TÜBİTAK ÇAYDAĞ proje raporu, Proje No: 114Y084.