ENDÜSTRİ 4.0’IN GÜVENLİK DEĞERLENDİRİLMESİ: ENDÜSTRİ 4.0’I SUÇ, BÜYÜK VERİ, NESNELERİN İNTERNETİ VE SİBER FİZİKSEL SİSTEMLER TEMELİNDE ANLAMAK

Dünya üzerinde işgücü maliyetlerinin artmasıyla birlikte üretim tesislerinin işçilik maliyeti düşük olan ülkelere kaydırıldığına geçmiş zamanlarda hepimiz şahit olduk. Günümüzde özellikle, teknoloji temelinde gelişmiş ülkeler öncülüğünde başlatılan endüstri 4.0 devrimiyle birlikte, söz konusu işçilik maliyeti düşürülerek üretkenlik ve kalite çerçevesinde endüstriyel rekabet sağlanmaya çalışılmaktadır. Endüstri 4.0 devrimi, neredeyse insanlardan bağımsız olarak kendi kendini koordine eden akıllı fabrikalar olarak da tanımlanmaktadır. Endüstri 4.0’ın hayatımıza girmesiyle birlikte; bilgi teknolojileri, iletişim ve eğitim başta olmak üzere birçok sektörel alanda devrim yaşanması beklenmektedir. Bu kapsamda, suç alanı da söz konusu değişim alanlarından biri olmaya aday konumdadır. Çünkü Endüstri 4.0’ın ortaya çıkaracağı kârlı kazanç yapısı, suçluları da bu alanda harekete geçmeye motive eden unsurların başında gelmesi beklenmektedir. Yapılan bu çalışma ile Endüstri 4.0’ı anlayarak, mevcut endüstriyel devrimlerin; güvenlik, nesnelerin interneti ve büyük veri açısından incelenmesi amaçlanmıştır. Yapılan incelemede, üretim maksimizasyonunu amaç edinen endüstri 4.0’ın, mevcut haliyle güvenlik sorunu doğuracağı ortadadır. Endüstri 4.0 ile birlikte, güvenlik sorunlarının çok daha spesifik hale gelmesi ve otomasyon kavramının güvenlik sorunlarına yeni paradigmalar eklemesi, genel anlamda siber tehdit mağduriyetini arttırmıştır. Halihazırda sanayimiz Endüstri 2.0 ile Endüstri 3.0 arasındadır. Bu kapsamda, gelecekte olması muhtemel suçların önlenmesi için güvenlik güçlerinin şimdiden teknik altyapılarını olgunlaştırmaları şarttır. Güvenlik güçleri için en uygun hareket tarzının, güvenlik odaklı savunma anlayışı olması beklenmektedir. Bu anlayış çerçevesinde, proaktif tutum sergileyerek; siber suçlulara karşı etkin yöntemlerin kullanılması gerekliliktir. Teknolojinin hızla değiştiği günümüzde, statik bir savunma anlayışının kabul edilemeyeceği, güvenlik güçlerinin her zaman yeni tehditlere karşı koyabilecek, dinamik bir siber suçla mücadele politikası benimsemesi gerektiği değerlendirilmektedir.

SECURITY EVALUATION OF INDUSTRY 4.0: UNDERSTANDING INDUSTRY 4.0 ON THE BASIS OF CRIME, BIG DATA, INTERNET OF THING (IoT) AND CYBER PHYSICAL SYSTEMS

In the past, we all witnessed that the production facilities were shifted to the countries with low employment costs due to the increasing labour costs around the world. Today, especially with the revolution of industry 4.0 initiated under the leadership of the developed countries on the basis of technology, industrial competition is tried to be provided within the framework of productivity and quality by reducing the cost of workmanship. The Industry 4.0 revolution is also defined as intelligent self-coordinating factories almost independently of people. The entry of Industry 4.0 into our lives is expected to revolutionize many sectors especially information technologies, communication and education. In this context, the subject of crime is also a candidate to be one of the areas of change because the profitable gain structure of the Industry 4.0 environment is expected to be one of the factors that motivate criminals to take action in this field. Therefore, the industrial revolutions were aimed to be examined in terms of security, internet of things and big data with this study conducted. In the analysis performed, it is clear that Industry 4.0, which aims at production maximization, will cause security problems with its current situation. With Industry 4.0, these security issues have become more specific problems and the concept of automation has added new paradigms to security issues and increased the possibility of being a victim of cyber threats. Currently, our industry is between Industry 2.0 and Industry 3.0. Within this scope, it is essential to enhance the technical background of the security teams in order to prevent the crimes that may occur in the future. It is expected that the most appropriate action type of security teams is the security-focused defence understanding. Regarding this understanding, a proactive attitude should be exhibited and it is necessary to use effective methods against cybercriminals. In today's world where the technology changes rapidly, it should be considered that a statical defence understanding cannot be accepted but security teams should adopt a dynamic cybercrime intervention policy in order to fight against new threats.

___

  • Aggarwal, D., Brennen, G. K., Lee, T., Santha, M., & Tomamichel, M. (2017). Quantum attacks on Bitcoin, and how to protect against them. Ledger, 3(3), 1-21.
  • Al Mazari, A., Anjariny, A. H., Habib, S. A., & Nyakwende, E. (2018). Cyber terrorism taxonomies: Definition, targets, patterns, risk factors, and mitigation strategies. In Cyber Security and Threats: Concepts, Methodologies, Tools, and Applications (pp. 608-621). IGI Global.
  • Aljawarneh, S. A., Alawneh, A., & Jaradat, R. (2017). Cloud security engineering: Early stages of SDLC. Future Generation Computer Systems, 74, 385-392.
  • Assunção, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A., & Buyya, R. (2015). Big Data computing and clouds: Trends and future directions. Journal of Parallel and Distributed Computing, 79, 3-15.
  • Bendel, O. (2015). Chancen und risiken 4.0. Unternehmerzeitung, 2(21), 35.
  • Botta, A., De Donato, W., Persico, V., & Pescapé, A. (2016). Integration of cloud computing and internet of things: a survey. Future generation computer systems, 56, 684-700.
  • Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., & Yin, B. (2017). Smart factory of industry 4.0: Key technologies, application case, and challenges. IEEE Access, 6, 6505-6519.
  • Chen, H. (2017). Applications of cyber-physical system: a literature review. Journal of Industrial Integration and Management, 2(03), 1750012.
  • Chiu, Y. C., Cheng, F. T., & Huang, H. C. (2017). Developing a factory-wide intelligent predictive maintenance system based on Industry 4.0. Journal of the Chinese Institute of Engineers, 40(7), 562-571.
  • Gordon, S. (2004). Privacy: A study of attitudes and behaviors in US, UK and EU ınformation security professionals. Symantec White Paper.
  • Gordon, S., & Ford, R. (2002). Cyberterrorism?. Computers & Security, 21(7), 636-647.
  • Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future generation computer systems, 29(7), 1645-1660.
  • Harley, C. K. (2018). Reassessing the industrial revolution: a macro view. In The British Industrial Revolution (pp. 160-205). Routledge.
  • Hilse, L. G. (2014). Risks of ISIS-Cyber-Terrorism. Larshilse, 72, 16.
  • Hozdić, E. (2015). Smart factory for industry 4.0: A review. International Journal of Modern Manufacturing Technologies, 7(1), 28-35.
  • Jin, X., Wah, B. W., Cheng, X., & Wang, Y. (2015). Significance and challenges of big data research. Big Data Research, 2(2), 59-64.
  • Klingenberg, C., & Do Vale Antunes Jr, J. A. (2017). Industry 4.0: What Makes it Revolution. In Predavanje na konferenci 24th International EurOMA conference Edinburgh: Inspiring Operations Management, Edinburgh (Vol. 1, No. 5).
  • Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431-440.
  • Lee, J., Ardakani, H. D., Yang, S., & Bagheri, B. (2015). Industrial big data analytics and cyber-physical systems for future maintenance & service innovation. Procedia Cirp, 38, 3-7
  • Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing letters, 3, 18-23.
  • Lillis, D., Becker, B., O'Sullivan, T., & Scanlon, M. (2016). Current challenges and future research areas for digital forensic investigation. arXiv preprint arXiv:1604.03850.
  • Liu, Y., Peng, Y., Wang, B., Yao, S., & Liu, Z. (2017). Review on cyber-physical systems. IEEE/CAA Journal of Automatica Sinica, 4(1), 27-40.
  • Mayer-Schönberger, V., Cukier, K. (2013). Big data. [electronic resource] : a revolution that will transform how we live, work, and think. Res. Manag.
  • Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., & Ueda, K. (2016). Cyber-physical systems in manufacturing. Cirp Annals, 65(2), 621-641.
  • Morrar, R., Arman, H., & Mousa, S. (2017). The fourth industrial revolution (Industry 4.0): A social innovation perspective. Technology Innovation Management Review, 7(11), 12-20.
  • Nguyen, H., Tran, K., Zeng, X., Koehl, L., Castagliola, P., & Bruniaux, P. (2019, July). Industrial Internet of Things, Big Data, and Artificial Intelligence in the Smart Factory: a survey and perspective.
  • Paelke, V. (2014, September). Augmented reality in the smart factory: Supporting workers in an industry 4.0 environment. In Proceedings of the 2014 IEEE emerging technology and factory automation (ETFA) (pp.1-4). IEEE.
  • Pereira, T., Barreto, L., & Amaral, A. (2017). Network and information security challenges within Industry 4.0 paradigm. Procedia Manufacturing, 13, 1253-1260.
  • Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., & Harnisch, M. (2015). Industry 4.0: The future of productivity and growth in manufacturing industries. Boston Consulting Group, 9(1), 54-89.
  • Schluse, M., Priggemeyer, M., Atorf, L., & Rossmann, J. (2018). Experimentable digital twins—Streamlining simulation-based systems engineering for industry 4.0. IEEE Transactions on Industrial Informatics, 14(4), 1722-1731.
  • Stearns, P. N. (2018). The industrial revolution in world history. Routledge.
  • Taute, B. (2017). Improving cybersecurity for industry. CSIR Science Scope, 12(3), 52-55.
  • Thames, L., & Schaefer, D. (2017). Cybersecurity for industry 4.0. New York: Springer.
  • Tjahjono, B., Esplugues, C., Ares, E., & Pelaez, G. (2017). What does industry 4.0 mean to supply chain?. Procedia Manufacturing, 13, 1175-1182.
  • Vaidya, S., Ambad, P., & Bhosle, S. (2018). Industry 4.0-A Glimpse. Procedia Manufacturing, 20, 233-238.
  • Vasilomanolakis, E., Daubert, J., Luthra, M., Gazis, V., Wiesmaier, A., & Kikiras, P. (2015, September). On the security and privacy of internet of things architectures and systems. In 2015 International Workshop on Secure Internet of Things (SIoT) (pp. 49-57). IEEE.
  • Vogel-Heuser, B., & Hess, D. (2016). Guest editorial Industry 4.0–prerequisites and visions. IEEE Transactions on Automation Science and Engineering, 13(2), 411-413.
  • Wan, K., Hughes, D., Man, K. L., Krilavicius, T. & Zou, S. (2011). Investigation of Composition Mechanisms for Cyber Physical Systems. International Journal of Design, Analysis and Tools for Circuits and Systems, 2(1), 30-40.
  • Wang, S., Wan, J., Li, D., & Zhang, C. (2016). Implementing smart factory of industrie 4.0: an outlook. International Journal of Distributed Sensor Networks, 12(1), 3159805.
  • Wangen, G. (2015). The role of malware in reported cyber espionage: A review of the impact and mechanism. Information, 6(2), 183-211.
  • Wübbeke, J., & Conrad, B. (2015). ‘Industrie 4.0’: Will German Technology Help China Catch Up with the West?. China Monitor, 23, 1-10. Yin, S., & Kaynak, O. (2015). Big data for modern industry: challenges and trends [point of view]. Proceedings of the IEEE, 103(2), 143-146. Zhou, K., Liu, T., & Zhou, L. (2015, August). Industry 4.0: Towards future industrial opportunities and challenges. In 2015 12th International conference on fuzzy systems and knowledge discovery (FSKD) (pp. 2147-2152). IEEE.