Serbest Radikallerin Önemi ve Gıda İşleme Sırasında Oluşumu

Serbest radikaller son yörüngelerinde eşlenmemiş elektron bulunduran süperoksit anyonu ve hidroksil radikali gibi aşırı reaktif kimyasal yapılardır. Serbest radikaller vücutta solunum gibi normal metabolik faaliyetler sırasında oluşarak fizyolojik düzeyde faydalı olurken; aşırı spor, enfeksiyon, radyasyon, sigara içme ve serbest radikallerce zengin gıda ile beslenme gibi olumsuz dış etkenler nedeniyle patolojik seviyeye ulaşırsa; diyabet, katarakt, kanser, kalp-damar rahatsızlıkları ve Alzheimer gibi hastalıkların oluşumuna neden olabilmektedirler. Hammaddelerde çok düşük miktarlarda bulunan serbest radikalerin miktarı gıdalara uygulanan dezenfeksiyon, boyut küçültme, ısıl işlem ve katkılama gibi işleme teknikleriyle artmaktadır. Özellikle oksijenli ortamlarda yüzey alanının artması ve yüksek sıcaklık uygulaması gıdaların oksijen bazlı serbest radikal içeriğini artırmaktadır. Hastalıkların oluşmasını önlemede ve kaliteli bir hayat sürmede en önemli önleyici faktörlerden biri de gıda güvenliğinin sağlanması ve doğru beslenmedir. Sonuç olarak gıdaların serbest radikal içeriklerini artıran aşırı işlemeden kaçınılması ve minimal işlem tekniklerin kullanılması toplum sağlığının koruması bakımından oldukça önemlidir.
Anahtar Kelimeler:

Serbest radikal, gıda, sağlık

Importance of Free Radicals and Occurring During Food Processing (Turkish with English Abstract)

Free radicals are defined as highly reactive chemicals having unpaired electron in the their outer orbit such as superoxide anion and hydroxyl radical. Although free radicals produce in body by normal metabolic activities like respiration have benefit effects in terms of physiologic level, when they reach pathologic level because of exogenous reason such as extreme sport, infection, radiation, smoking and nutrition of diets with rich free radicals some disease might occur such as diabetes, cataract, cancer, cardiovascular problems and Alzheimer. The amount of free radicals, existing at a very low level in raw materials, is increased by food processing techniques such as disinfection, size reduction, heat treatment and addition. Especially, reactive oxygen species content of food is increased with accompanied oxygen abundance by surface expanding and exposing to high temperature. Ensuring food safety and right nutrition is one of the important preventive factors occurring of disease and keep on life quality. Conclusion, avoiding from over-processing because it increase free radical content of food and using minimal techniques are very important in point of protect public health.

___

  • Gümüflkesen AS, Yemiflçioglu F. 2010. Bitkisel Sivi ve Kati Yag Üretim Teknolojisi, Ege Üniversitesi Gida Mühendisligi Bölümü, Meta Basim Matbaasi, Bornova, izmir. 224 s.
  • Shahidi, F. 2005. Bailey’s Industrial Oil And Fat Products, John Wiley & Sons, Inc. ABD. 3616 s.
  • Greyt W. 2004. Deodorization And Physical Refining, IUPAC-AOCS Workshop on Fats, Oils & Oilseeds Analyses & Production, De Smet Group Belgium.
  • Haslenda H, Jamaludin MZ. 2011. Industry to Industry By-products Exchange Network towards zero waste in palm oil refining processes. Resour Environ Biotechnol, 55, 713-718.
  • Vehre R. 2004. Influence of processing on minor components in vegetable oils, University of Ghent, Faculty of Agricultural and Applied Biological Sciences, Department of Organic Chemistry., 39 s.
  • Scholfield CR. 1981. Composition of Soybean Lecithin. J Am Oil Chem Soc. 58 (10), 889-892.
  • Griffin WC. 1954. Calculation of HLB Values of Non-Ionic Surfactants. Journal of the Society of Cosmetic Chemists 5, 249.
  • Davies JT. 1957. A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent, Gas/Liquid and Liquid/Liquid Interface. Proceedings of the International Congress of Surface Activity. 426-438.
  • Zeisel SH. 2003. Choline (a) Properties and Determination. In Encyclopedia of Food Sciences and Nutrition, Benjamin C (Chief ed.). Academic Press, London, pp. 1251-1254.
  • Nieuwenhuyzen W, Tomás MC. 2008, Update on vegetable lecithin and phospholipid technologies, Eur. J. Lipid Sci. Technol. 110, 472486.
  • Ghosh M, Bhattacharyya DK. 1997. Soy Lecithin–Monoester Interchange Reaction by Microbial Lipase. J Am Oil Chem Soc. 74 (6). 761763.
  • List GR, King JW, Johnson JH, Warner K, Mounts TL. 1993. Supercritical CO2 Degumming and Physical Refining of Soybean Oil. Food Quality and Safety Research, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois 61604.
  • Manjula S, Kobayashi I, Subramanian R. 2011, Characterization of phospholipid reverse micelles in nonaqueous systems in relation to their rejection during membrane processing, Food Research International, 44, 925–930.
  • FEDIOL, 2011, Flow chart of the production chain of soybean meal and oil products for feed application in the EU, www.fediol.be, Web access: 12.02.2013.
  • Dowd MK. 1998. Gas chromatographic characterization of soapstocks from vegetable oil refining. J Chromatogr A. 816, 185-193.
  • Woerfel JB. 1982. Alternatives for Processing of Soapstock. World Conference on Oilseed and Edible Oil Processing, The Hague, Proceedings, 310-313.
  • Fazli Y, Tajdari M, Kermani P. 2013. Soap Stock Separation Process. Asian Journal Of Chemistry. 25, 2333-2334.
  • Dumont MJ, Narine SS. 2007. Soapstock and deodorizer distillates from North American vegetable oils: Review on their characterization, extraction and utilization. Food Res Int, 40, 957-974.
  • Ong JTL. 1982. Oil Recovery from Spent Bleaching Earth and Disposal of the Extracted Material. Of the World Conferance: On Oilseed and Edible Oil Processing, October 1982. The Hague, Proceedings, 314-315.
  • Kheang LS, Foon CS, May CY, Ngan, MA. 2006. A Study of Residual Oils Recovered from Spent Bleaching Earth:Their Characteristics and Applications. American Journal of Applied Sciences 3(10), 2063-2067
  • Mana M, Ouali MS, Lindheimer M, Menorval LC. 2008. Removal of lead from aqueous solutions with a treated spent bleaching earth. J Hazard Mater, 159. 358-364.
  • Huang YP, Chang JI, 2010. Biodiesel production from residual oils recovered from spent bleaching earth. Renewable Energy, 35, 269-274.
  • Suppalakpanya K, Ratanawilai SB, Tongurai C. 2010. Production of ethyl ester from esterified crude palm oil by microwave with dry washing by bleaching earth. Applied Energy, 87, 2356-2359.
  • Suhartini S, Hidayat N, Wijaya S. 2011. Physical properties characterization of fuel briquette made from spent bleaching earth. Biomass Bioenergy, 35, 4209-4214.
  • Boey PL, Ganesan S, Maniam GP. 2011. Regeneration and Reutilization of Oil-Laden Spent Bleaching Clay via in Situ Transesterification and Calcination. J Am Oil Chem Soc, 88, 1247-1253.
  • Malakootian M, Fatehizadeh A, Yousefi N, Ahmadian M, Moosazadeh M. 2011. Fluoride removal using Regenerated Spent Bleaching Earth (RSBE) from groundwater: Case study on Kuhbonan water. Desalination, 277, 244-249.
  • Mana M, Ouali MS, Menorval LC, Zajac JJ, Charnay C. 2011. Regeneration of spent bleaching earth by treatment with cethyltrimethylammonium bromide for application in elimination of acid dye. Chem Eng J, 174, 275-280.
  • Nagao T, Watanabe Y, Nakano H, Shimada Y. 2013. Production and Purification of Functional Lipids Through Enzymatic and MicroorganismMediated Processes. Current Organic Chemistry, 17 (8), 776-785.
  • Naz S, Sherazi STH, Talpur FN, Talpur MY, Kara H. 2012. Determination of Unsaponifiable Constituents of Deodorizer Distillates by GC–MS. J Am Oil Chem Soc, 89, 973-977.
  • Lin KM, Koseoglu SS. 2003. Seperation of sterols from deodorizer distillate by crystallization. Journal of Food Lipids, 10:107-127.
  • Buczenko GM, Oliveria JS, Von Meien OF. 2003. Extraction of tocopherols from the deodorized distillate of soybean oil with liquefied petroleum gas. Eur J Lipid Sci Technol. 105, 668-671.
  • Chua CLS, Baharin BS, Man YBC, Tan CP. 2007. Separation of squalene from palm fatty acid distillate using adsorption chromatography, Eur J Lipid Sci Technol, 109 (11), 1083-1087.
  • Ju YH, Huynh LH, Gunawan S, Chern YT, Kasim NS. 2012. Irresolvable complex mixture of hydrocarbons in soybean oil deodorizer distillate. J Sep Sci, 35, 327–333.
  • Yan F, Yang H, Li J, Wang H. 2012. Optimization of Phytosterols Recovery from Soybean Oil Deodorizer Distillate. J Am Oil Chem Soc, 89, 1363-1370.
  • Isso B, Ryan D. 2012. Extraction of a-tocopherolquinone from vegetable oil deodorizer distillate waste. Eur J Lipid Sci Technol, 114, 927932.
  • Bondioli P, Mariani C, Lanzani A, Fedeli E, Muller A. 1993. Squalene recovery from olive oil deodorizer distillates, J Am Oil Chem Soc, 70 (8), 763-766.
  • Nagesha GK, Manohar B, Sankar KU. 2003. Enrichment of tocopherols in modified soy deodorizer distillate using supercritical carbon dioxide extraction, Eur Food Res Technol, 217, 427-433.
  • Ruivo R, Paiva A, Simões P. 2004. Phase equilibria of the ternary system methyl oleate/ squalene/carbon dioxide at high pressure conditions, J. Supercrit. Fluids, 29, 77-85.
  • Mendes MF, Pessoa FLP, Coelcho GV, Uller AMC. 2005. Recovery of the high aggregated compound present in the deodorizer distillate of the vegetable oils using supercritical fluids. J. Supercrit. Fluids, 34, 157-162.
  • Sugihara N, Kanda A, Nakano T, Nakamura T, Igusa H, Hara S. 2010. Novel Fractionation Method for Squalene and Phytosterols Contained in the Deodorization Distillate of Rice Bran Oil, Journal of Oleo Science, 59(2), 65-70.
  • Akgun NA. 2011. Separation of squalene from olive oil deodorizer distillate using supercritical fluids. Eur. J. Lipid Sci. Technol. 2011, 113, 15581565.
  • Liang G, Qiao X, Bi Y, Zoua B, Zhenga Z. 2012. Studies on purification of allicin by molecular distillation. J Sci Food Agric, 92, 1475-1478.
  • Shimada Y, Nakai S, Suenaga M, Sugihara A, Kitano M, Tominaga Y. 2000. Facile Purification of Tocopherols from Soybean Oil Deodorizer Distillate in High Yield Using Lipase, J Am Oil Chem Soc, 77 (10) 1009-1013.
  • Hirota Y, Nagao T, Watanabe Y, Suenaga M, Nakai S, Kitano M, Sugihara A, Shimada Y. 2003. Purification of Steryl Esters from Soybean Oil Deodorizer Distillate, J Am Oil Chem Soc, 80 (4) 341-346.
  • Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N. 2005. H2 and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process, J Biosci Bioeng, 100 (3) 260-265.
  • Martins PF, Ito VM, Batistella CB, Maciel MRW. 2006. Free fatty acid separation from vegetable oil deodorizer distillate using molecular distillation process. Separation and Purification Technology, 48, 78-84.
  • Meyer F, Eggers R, Oehlke K, Harbaum-Piayda B, Schwarz K, Siddiqi MA. 2011. Application of short path distillation for recovery of polyphenols from deodorizer distillate. Eur. J. Lipid Sci. Technol. 113, 1363-1374.
  • Nagesha GK, Subramanian R, Sankar KU. 2003. Processing of Tocopherol and FA Systems Using a Nonporous Denser Polymeric Membrane, J Am Oil Chem Soc. 80, 397-402.
  • Teixeira ARS, Santos JLC, Crespo JG. 2012. Lipase-Catalyzed Consecutive Batch Reaction for Production of Steryl Esters from Vegetable Oil Deodorizer Distillates. Ind. Eng. Chem. Res. 51, 5443-5455.
  • Nagao T, Kobayashi T, Hirota Y, Kitano M, Kishimoto C, Fujita T. 2005. Improvement of a process for purification of tocopherols and sterols from soybean oil deodorizer distillate. J Mol Catal B Enzym, 37, 56-62.
  • Ramamurthi S, Mc Curdy AR. 1993. Enzymatic Pretreatment of Deodorizer Distillate for Concentration of Sterols and Tocopherols. J Am Oil Chem Soc, 70(3), 287-295.
Gıda-Cover
  • ISSN: 1300-3070
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1976
  • Yayıncı: Prof. Dr. İbrahim ÇAKIR