MİKRODALGA TEKNOLOJİSİNİN BİTKİSEL DOKULARDAN MAKRO VE MİKRO BİLEŞENLERİN ÖZÜTLENMESİNDE KULLANIMI

Mikrodalgalar, elektromanyetik spektrumda kızılötesi ve radyo dalgaları arasında yer alan, dalga boyları 1 mm – 1 m ve frekansları 300 MHz ile 300 GHz arasında değişen elektromanyetik dalgalardır. Mikrodalga işleminde gıdanın içerisindeki polar su molekülleri, elektrik alan etkisi ile polarize olmakta ve moleküllerin titreşimi sonucu oluşan ısı, özütleme verimini de arttırmaktadır. Mikrodalga teknolojisi, birçok özütleme tekniğine göre maliyetinin düşük, proses süresinin kısa olması ve besinsel bileşenlerin daha iyi korunması gibi avantajlara sahiptir. Mikrodalga teknolojisinin bitkisel dokulardan protein, karbonhidrat, uçucu yağ ve fenolik gibi maddeleri özütlemede kullanımı ile ilgili özellikle son yıllarda yapılan çok sayıda çalışma bulunmaktadır. Bu derleme kapsamında, mikrodalga teknolojisi, bitkisel materyallerden farklı makro ve mikro bileşenlerin mikrodalga destekli özütlenmesi ile ilgili güncel çalışmalara da değinilerek literatür çalışmalarına yer verilmiştir.

THE USE OF MICROWAVE TECHNOLOGY ON THE EXTRACTION OF MACRO AND MICRO COMPONENTS FROM PLANT TISSUES

Microwaves are the electromagnetic waves between the infrared and radio waves in the electromagnetic spectrum, and they have a wavelength of 1 mm – 1 m and a frequency of 300 MHz - 300 GHz. In microwave process, the polar water molecules in the food are polarized by the electric field, and the heat generated by the vibrations of the molecules increases the extraction efficiency. Microwave technology has advantages such as low cost, short process time and better preservation of nutritional components compared to many extraction techniques. There have been many studies related with the use of microwave technology on extracting protein, carbohydrate, essential oil and phenolic compounds from plant tissues, especially in the recent years. In this review, microwave technology and microwave-assisted extraction of different macro- and micro-components from plant materials are presented from the literature by considering latest studies.

___

  • Adetunji, L. R., Adekunle, A., Orsat, V., Raghavan, V. (2017). Advances in the pectin production process using novel extraction techniques: A review. Food Hydrocolloids, 62, 239-250.Álvarez, A., Poejo, J., Matias, A. A., Duarte, C. M., Cocero, M. J., Mato, R. B. (2017). Microwave pretreatment to improve extraction efficiency and polyphenol extract richness from grape pomace. Effect on antioxidant bioactivity. Food Bioprod Process, 106, 162-170.Atuonwu, J. C., Tassou, S. A. (2018). Quality assurance in microwave food processing and the enabling potentials of solid-state power generators: A review. J Food Eng.Baki, S., Tufan, A. N., Altun, M., Özgökçe, F., Güçlü, K., Özyürek, M. (2018). Microwave-assisted extraction of polyphenolics from some selected medicinal herbs grown in Turkey. Rec Nat Prod, 12, 29-39.Ballard, T. S., Mallikarjunan, P., Zhou, K., O’Keefe, S. (2010). Microwave-assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chem, 120(4), 1185-1192.Barba, F. J., Zhu, Z., Koubaa, M., Sant'Ana, A. S., Orlien, V. (2016). Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: a review. Trends Food Sci Tech, 49, 96-109.Bayramoglu, B., Sahin, S., Sumnu, G. (2008). Solvent-free microwave extraction of essential oil from oregano. J Food Eng, 88(4), 535-540.Bagherian, H., Ashtiani, F. Z., Fouladitajar, A., Mohtashamy, M. (2011). Comparisons between conventional, microwave-and ultrasound-assisted methods for extraction of pectin from grapefruit. Chem Eng Process: Process Intensification, 50(11-12), 1237-1243.Büyüktuncel, E. (2012). Gelişmiş ekstraksiyon teknikleri I. Hacettepe Üniversitesi. Ecz Fak Derg, 32(2), 209-242.Chandrasekaran, S., Ramanathan, S., Basak, T. (2013). Microwave food processing—A review. Food Res Int, 52(1), 243-261.Chaturvedi, A. K. (2018). Extraction of Neutraceuticals from Plants by Microwave Assisted Extraction. Sys Rev Pharm, 9(1).Chen, Q., Hu, Z., Yao, F. Y. D., Liang, H. (2016). Study of two-stage microwave extraction of essential oil and pectin from pomelo peels. LWT-Food Sci Tech, 66, 538-545.Choi, I. L., Choi, S. J., Chun, J. K., Moon, T. W. (2006). Extraction yield of soluble protein and microstructure of soybean affected by microwave heating. J Food Process Pres, 30(4), 407-419.Dahmoune, F., Nayak, B., Moussi, K., Remini, H., Madani, K. (2015). Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem, 166, 585-595.Villanueva, M., Harasym, J., Muñoz, J. M., Ronda, F. (2018). Microwave absorption capacity of rice flour. Impact of the radiation on rice flour microstructure, thermal and viscometric properties. J Food Eng.Eskilsson, C. S., Björklund, E. (2000). Analytical-scale microwave-assisted extraction. J Chromatogr A, 902(1), 227-250.Ferhat, M. A., Meklati, B. Y., Visinoni, F. R. A. N. C. O., Vian, M. A., Chemat, F. (2008). Solvent free microwave extraction of essential oils. Green chemistry in the teaching laboratory, Chim Oggi, 21-23.Filly, A., Fernandez, X., Minuti, M., Visinoni, F., Cravotto, G., Chemat, F. (2014). Solvent-free microwave extraction of essential oil from aromatic herbs: from laboratory to pilot and industrial scale. Food Chem, 150, 193-198.Flórez, N., Conde, E., Domínguez, H. (2015). Microwave assisted water extraction of plant compounds. J Chem Technol Biot, 90(4), 590-607.Hiranvarachat, B., Devahastin, S. (2014). Enhancement of microwave-assisted extraction via intermittent radiation: Extraction of carotenoids from carrot peels. J Food Eng, 126, 17-26.Hosseini, S. F., Zandi, M., Rezaei, M., Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydr Polym, 95(1), 50-56.Ince, A. E., Sahin, S., Sumnu, G. (2014). Comparison of microwave and ultrasound-assisted extraction techniques for leaching of phenolic compounds from nettle. J Food Sci Tech, 51(10), 2776-2782.Konak, Ü. İ., Certel, M., Helhel, S. (2009). Gıda sanayisinde mikrodalga uygulamaları. Gıda Teknolojileri Elektronik Dergisi, 4(3), 20-31.Krishnan, R. Y., & Rajan, K. S. (2016). Microwave assisted extraction of flavonoids from Terminalia bellerica: study of kinetics and thermodynamics. Sep Purif Technol, 157, 169-178Kumar, S., Sivakumar, M., Ruckmani, K. (2016). Microwave-assisted extraction of polysaccharides from Cyphomandra betacea and its biological activities. Int J Biol Macromol, 92, 682-693.Li, Y., Fabiano-Tixier, A. S., Abert-Vian, M., Chemat, F. (2012). Microwave-assisted extraction of antioxidants and food colors. Microwave-assisted Extraction for Bioactive Compounds, Springer:Boston, MA., ISBN; 978-1-4614-4830-3.Liazid, A., Guerrero, R. F., Cantos, E., Palma, M., Barroso, C. G. (2011). Microwave assisted extraction of anthocyanins from grape skins. Food Chem, 124(3), 1238-1243.Maran, J. P., Sivakumar, V., Thirugnanasambandham, K., Sridhar, R. (2014). Microwave assisted extraction of pectin from waste Citrullus lanatus fruit rinds. Carbohyd Polym, 101, 786-791.Meda, V., Orsat, V., Raghavan, V. (2017). Microwave heating and the dielectric properties of foods. In The Microwave Processing of Foods (Second Edition), Woodhead:Cambridge, ISBN; 978-0-08-100528-6.Nkhili, E., Tomao, V., El Hajji, H., El Boustani, E. S., Chemat, F., Dangles, O. (2009). Microwave‐assisted water extraction of green tea polyphenols. Phytochem Analysis, 20(5), 408-415.Ochoa-Rivas, A., Nava-Valdez, Y., Serna-Saldívar, S. O., Chuck-Hernández, C. (2017). Microwave and ultrasound to enhance protein extraction from peanut flour under alkaline conditions: effects in yield and functional properties of protein isolates. Food Bioprocess Tech, 10(3), 543-555.Orsat, V., Routray, W. (2018). Microwave-Assisted Extraction of Flavonoids. Water Extraction of Bioactive Compounds;ISBN: 9780128096154.Perino-Issartier, S., Abert-Vian, M., Chemat, F. (2011). Solvent free microwave-assisted extraction of antioxidants from sea buckthorn (Hippophae rhamnoides) food by-products. Food Bioprocess Tech, 4(6), 1020-1028.Phongthai, S., Lim, S. T., Rawdkuen, S. (2016). Optimization of microwave-assisted extraction of rice bran protein and its hydrolysates properties. J Cereal Sci, 70, 146-154.Pojić, M., Mišan, A., Tiwari, B. (2018). Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends Food Sci Tech.Ranic, M., Nikolic, M., Pavlovic, M., Buntic, A., Siler-Marinkovic, S., Dimitrijevic-Brankovic, S. (2014). Optimization of microwave-assisted extraction of natural antioxidants from spent espresso coffee grounds by response surface methodology. J Clean Prod, 80, 69-79.Regier, M., Knoerzer, K., Schubert, H. (Eds.). (2016). The microwave processing of foods. Woodhead:Cambridge.Roelvink, J., Trabelsi, S., Nelson, S. O. (2013). A planar transmission-line sensor for measuring the microwave permittivity of liquid and semisolid biological materials. IEEE T Instrum Meas, 62(11), 2974-2982.Seoane, P. R., Flórez-Fernández, N., Piñeiro, E. C., González, H. D. (2018). Microwave-Assisted Water Extraction. Water Extraction of Bioactive Compounds; ISBN: 9780128096154.Sevindik, O., Selli, S. (2017). Üzüm çekirdek yağı eldesinde kullanılan ekstraksiyon yöntemleri. GIDA, 42(1).Simić, V. M., Rajković, K. M., Stojičević, S. S., Veličković, D. T., Nikolić, N. Č., Lazić, M. L., Karabegović, I. T. (2016). Optimization of microwave-assisted extraction of total polyphenolic compounds from chokeberries by response surface methodology and artificial neural network. Sep Purif Technol, 160, 89-97.Spigno, G., De Faveri, D. M. (2009). Microwave-assisted extraction of tea phenols: a phenomenological study. J Food Eng, 93(2), 210-217.Swamy, G. J., Muthukumarappan, K. (2017). Optimization of continuous and intermittent microwave extraction of pectin from banana peels. Food Chem, 220, 108-114.Teo, C. C., Chong, W. P. K., Ho, Y. S. (2013). Development and application of microwave-assisted extraction technique in biological sample preparation for small molecule analysis. Metabolomics, 9(5), 1109-1128.Thirugnanasambandham, K., Sivakumar, V., Maran, J. P. (2014). Process optimization and analysis of microwave assisted extraction of pectin from dragon fruit peel. Carbohyd Polym, 112, 622-626.Thirugnanasambandham, K., Sivakumar, V., Maran, J. P. (2015). Microwave-assisted extraction of polysaccharides from mulberry leaves. Int J Macromol, 72, 1-5.Thirugnanasambandham, K., Sivakumar, V. (2017). Microwave assisted extraction process of betalain from dragon fruit and its antioxidant activities. J Saudi Soc Agri Sci, 16(1), 41-48.Tsubaki, S., Onda, A., Hiraoka, M., Fujii, S., Azuma, J. I., Wada, Y. (2018). Microwave-Assisted Water Extraction of Carbohydrates From Unutilized Biomass. Water Extraction of Bioactive Compounds; ISBN; 9780128096154.Tsubaki, S., Oono, K., Onda, A., Yanagisawa, K., Azuma, J. I. (2013). Comparative decomposition kinetics of neutral monosaccharides by microwave and induction heating treatments. Carbohyd Res, 375, 1-4.Uslu, M. K., Certel, M. (2006). Dielektrik ısıtma ve gıda işlemede kullanımı. Teknolojik Araştırmalar GTED, 3(1), 61-69.Xia, T., Zhang, C., Oyler, N. A., Chen, X. (2013). Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv Mater, 25(47), 6905-6910.Xu, M., Yao, X., & Wang, J. (2017). Study on Extraction Technology of Polysaccharides from Jujube by Microwave Method. OALib Journal, 4(03), 1.Yang, Z., Zhai, W. (2010). Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC–MS. Innov Food Sci Emerg, 11(3), 470-476.
Gıda-Cover
  • ISSN: 1300-3070
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1976
  • Yayıncı: Prof. Dr. İbrahim ÇAKIR