Değişik Ortam Komposizyonunda Rhizopus oryzae’nin Poligalakturonaz Üretimi ile Pellet Morfolojisinin İlişkisi (İngilizce)

Bu çalışmada, ortam kompozisyonunu belirleyen değişik faktörlerin Rhizopus oryzae pellet morfolojisine ve poligalakturonaz (PG) enzimi üretimine olan etkisi incelenmiştir. En yüksek PG aktivitesine (11.53 U/ml) 4 mg/kg Zn+2 içeren, Mg+2 içermeyen ve pH 3 olan basal ortamında ulaşılmıştır. Karbon kaynağı olarak 14.78 g/l glukoz, 10 g/l galaktoz, 5 g/l mannoz, 0.5 g/l arabinoz ve 19.73 g/l ksilozun birlikte kullanılmıyla da en yüksek PG aktivitesine (27.94 U/ml) ulaşılmıştır. Mısır unu nitrojen kaynağı olarak PG sentezini tetik­lemede oldukça etkili olup bir diğer yüksek tetikleyici olan mısır maserasyon sıvısı (CSL) ve (NH4)2SO4’den %33 daha fazla aktivite vermiştir. (NH4)2SO4 and 25 g/l glukoz içereren formulasyon ortalama çapı 1.25± 0.25 olan en fazla sayıda pellet oluşumunu sağlamıştır. Ortalama çapı 1.75±0.25 mm olan pelletlerin oluşu­mu ise yüksek glukoz konsantrasyonuna sahip (50g/l) maya ekstraktı içeren formulasyon ile elde edilmiştir. Uygun karbon kaynağının (glukoz) uygun nitrojen kaynağı (mısır unu) ile interaktif etkisi PG aktivitesini basal ortama göre 4 kat daha arttırmış, ortalama çapı 1.44±0.35mm olan pelletler oluşturmuştur.

The Relationship of Pellet Morphology to Polygalacturonase Production of Rhizopus Oryzae in Various Media Compositions (in English)

Various media parameters affecting the polygalacturonase (PG) production of Rhizopus oryzae, were stud­ied and their relation to pellet morphology was investigated. The basal medium in the absence of Mg+2 and in the presence of 4 mg/kg of Zn +2 at pH 3, resulted into maximum PG activity (11.53 U/ml). A composi­tion of 14.78 g/l of glucose, 10 g/l of galactose, 5 g/l mannose, 0.5 g/l of arabinose and 19.73 g/l of xylose resulted into maximum PG activity (27.94 U/ml) when used as combined carbon sources. Corn meal as the nitrogen source, promoted PG synthesis where it resulted into 33 % more activity than corn steep liquor (CSL) and (NH4)2SO4 which were the next highest promoter. The highest number of pellets with an aver­age mean diameter of 1.25±0.25 mm was obtained with the formulation containing (NH4)2SO4 and 25 g/l of glucose. Yeast extract on the other hand resulted into pellet formation with an average mean diameter of 1.75±0.25 mm at higher glucose concentration (50 g/l). The interactive effect of suitable carbon source (glucose) with suitable nitrogen source (corn meal) enhanced the PG activity 4 times more than the basal medium with pellets of 1.44±0.35mm in average diameter.

___

  • Van Sjijdam JC, Kossen NWF, Paul PG. 1980. An inoculumn technique for the production of fungal pellets. European J. Appl. Microbiol. Biotechnol, 10(3), 211-221.
  • Casas Lopez JL, Sanchez Perez JA, Fernandez Sevilla JM, Acien Fernandez FG, Molina Grima E, Christi Y. 2004. Fermentation optimization for the production of lovastitin by Aspergillus terreus: use of response surface methodology. J. Chem. Technol. Biotechnol,79 (10), 11191126.
  • Papagianni M. 2004. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv, 22, 189-259.
  • Hosobushi M, Fukui F, Matsukawa H, Suzuki T, Yoshikawa H. 1993. Morphology control of preculture during production of ML-236B, a precursor of paravastatin sodium by Penicillum citrium. J. Ferent Bioeng, 76, 476481.
  • Du LX, Jia SJ, Lu FP. 2003. Morphological changes of Rhizopus chinesis 12 in submerged culture and its relationship with antibiotic production. Process Biochem, 38, 1643-1646.
  • Byrne GS and Ward OP. 1989. Effect of nutrition on pellet formation by Rhizopus arrhizus. Biotechnol. Bioeng, 33, 912-914.
  • Saito K, Takakuwa N, Oda Y. 2004. Purification of the extracellular pectinolytic enzyme from the fungus Rhizopus oryzae NBRC 4707. Microbiol. Res, 159, 83-86.
  • Hoondal GS, Tiwari RP, Tiwari T, Dahiya N, Beg QK. 2002. Microbial alkaline pectinases and their applications: a review. Appl. Microbiol. Biotechnol, 59, 409-418.
  • Freedonia Group. 2009. Enzymes: US Industry Study with Forecast for 2012 & 2017. Cleveland, USA
  • Tari C, Gogus N, Tokatli F. 2007. Optimization of biomass, pellet size and polygalacturonase production by Aspergillus sojae ATCC 20235 using surface methodology. Enzyme Microb. Technol, 40, 1108-1116.
  • Panda T, Naidu GSNJ, Sinha J. 1999. Multiresponse analysis of microbiological parameters affecting the production of pectolytic enzymes by Aspergillus niger: a statistical view. Process Biochem, 35, 187-195.
  • DuBois M. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28(3), 350-356.
  • Cox PW. Thomas CR. 1992. Classification and measurement of fungal pellets by automated image analysis. Biotechnol. Bioeng, 39, 945-952
  • Lopez JLC, Perez JAS, Sevilla JMF, Porcel EMJ, Chisti Y. 2005.Pellet morphology, culture rheology and lovastatin production in cultures of Aspergillus terreus. J. Biotechnol, 116, 61-77.
  • Znidarsic R, Komel R, Pavko A. 2000. Influence of some environmental factors on Rhizopus nigricans submerged growth in the form of pellets. World J. Microbiol Biotechnol, 16, 589-593.
  • Taherzadeh M, Fox M, Hjorth H, Edebo L. 2003. Production of mycelium biomass and ethanol from paper pulp sulfite liquor by Rhizopus oryzae. Bioresour Technol, 88, 167-177.
  • Millati R, Edebo L, Taherzadeh MJ. 2005. Performance of Rhizopus, Rhizomucor and Mucor in ethanol production from glucose, xylose and wood hydrolyzates. Enzyme Microb. Technol, 36, 294-300.
  • Karimi K, Emtiazi G, Taherzadeh MJ. 2006. Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus,,. Rhizopus oryzae and Saccharomyces cerevisia. Enzyme Microb. Techno,. 40, 138-144.
  • Jonsbu E, McIntyre M, Nielsen J. 2002. The influence of carbon sources and morphology on nystatin production of Streptomyces noursei. J. Biotechnol, 95, 133-144.
Gıda-Cover
  • ISSN: 1300-3070
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1976
  • Yayıncı: Prof. Dr. İbrahim ÇAKIR