BİYOAKTİF PEPTİTLERİN SAĞLIK ÜZERİNE ETKİLERİ

Biyoaktif peptitler aminoasitlerin peptit bağlarıyla bağlanması sonucu oluşan, vücut fonksiyonlarına olumlu etkisi olan ve sağlığı etkileyebilen spesifik protein parçalarıdır. Bazı biyoaktif peptitler doğal kaynaklarında serbest olarak bulunurlar. Ancak, bilinen biyoaktif peptitlerin büyük çoğunluğu ana proteinlerin yapısı içerisinde inaktif halde bulunurlar ve proteolitik enzimlerle hidroliz veya fermantasyon sonucu serbest kalırlar. Biyoaktif peptitler, sindirim, endokrin, kardiyovasküler, bağışıklık ve sinir sistemini ve dolayısıyla insan sağlığını etkilerler. In vitro ve in vivo çalışmalarda antimikrobiyal, antitrombotik, antihipertansif, opioid, immünomodülatör, kolesterol düşürücü, mineral bağlayıcı ve antioksidatif özellikler gösterdikleri ortaya konmuştur. Bu derlemede biyoaktif peptitlerin tanımlanması, kaynakları, biyoaktif özellikleri ve sağlık üzerine etkileri ele alınmıştır.

EFFECTS OF BIOACTIVE PEPTIDES ON HEALTH

Bioactive peptides are formed by amino acids joined by peptide bonds and defined as specific protein fragments that have a positive impact on body functions, and may influence health. Some bioactive peptides exist free in its natural source. However,  the vast majority of known bioactive peptides are inactive within the structure of the parent proteins and are released by enzymic hydrolysis or fermentation. Bioactive peptides play a significant role in human health by affecting the digestive, endocrine, cardiovascular, immune, and nervous systems. In vitro and in vivo studies showed that bioactive peptides exhibited antimicrobial, antithrombotic, antihypertensive, opioid, immunomodulator, cholesterol lowering, mineral binding and antioxidant roperties. In this review, identification, sources, bioactive properties and health effects of bioactive peptides are addressed.

___

  • Agarwa, P., Gupta, R. (2016). Alpha-amylase inhibition can treat diabetes mellitus. Research and Reviews Journal of Medical and Health Sciences, 5: 1-8.
  • Anonymous (2017). http://www.who.int/mediacentre/factsheets/fs312/en/ 15/12/2017). Arihara, S., Umeyama, A., Bando, S., Kobuke, S., Imoto, S., Ono, M. (2004). Termiticidal constituents of the black-heartwood of Cryptomeria japonica. Mokuzai Gakkaishi, 50: 413-421.
  • Arrutia, F., Puente, Á., Riera, F. A., Menéndez, C., González, U. A. (2016a). Influence of heat pre-treatment on BSA tryptic hydrolysis and peptide release. Food Chemistry, 202: 40–48.
  • Bhat, Z. F., Kumar, S., Bhat, H. F. (2015). Bioactive peptides from egg: a review. Nutrition and Food Science, 45: 190–212.
  • Brown, A., Anderson, D., Racicot, K., Pilkenton. S. J., Apostolidis, E. (2017). Evaluation of chemical phytochemical enriched commercial plant extracts on the in vitro inhibition of α-glucosidase. Frontiers in Nutrition, 4: 1-8.
  • Choi, J., Sabikhi, L., Hassan, A., Anand, S. (2012). Bioactive peptides in dairy products. International Journal of Dairy Technology, 65: 1–12.
  • Cicero, A. F. G., Fogacci, F., Colletti, A. (2017). Potential role of bioactive peptides in prevention and treatment of chronic diseases: a narrative review. British Journal of Pharmacology, 174: 1378–1394.
  • Dainty, R., Blom, H. (1995). Flavor chemistry of fermented sausages. In: Fermented Meats, Campbell-Platt G, Cook PE (Eds), Blackie Academic Press, UK, pp. 176-193.
  • Dziuba, B., Dziuba, M. (2014). Milk proteins-derived bioactive peptides in dairy products: molecular, biological and methodological aspects. Acta Sci Pol Technol Aliment, 13(1): 5–25.
  • Finkel, T., Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408: 239-247.
  • Fitzgerald, R. J., Murray, B. A. (2006). Bioactive peptides and lactic fermentations. Int. J. Dairy Technol., 59: 118-125.
  • Gill, I., López-Fandino, R., Jorba, X., Vulfson, E. N. (1996). Biologically active peptides and enzymatic approaches to their production. Enzym Microb Technol, 18: 162–183.
  • Gobbetti, M., Stepaniak, L., De Angelis, M., Corsetti, A., Di Cagno, R. (2002). Latent bioactive peptides in milk proteins: proteolytic activation and significance in dairy processing. Critical Reviews in Food Science & Nutrition, 42: 223–239.
  • Hartmann, R., Meisel, H. (2007). Food-derived peptides with biological activity: from research to food applications. Current Opinion in Biotechnology, 18: 163–169.
  • Jang, A., Lee, M. (2005). Purification and identification of angiotensin converting enzyme inhibitory peptides from beef hydrolysates. Meat Sci. 69: 653–661.
  • Kannan, A., Hettiarachchy, N., Marshall, M. (2012). Food Proteins and Peptides as Bioactive Agents. In Bioactive Food Proteins and Peptides Applications in Human Health, Ed: N. S. Hettiarachchy. CRC Press, Taylor And Francis Group, Boca Raton, pp. 1-27.
  • Korhonen, H., Pihlanto, A. (2003). Bioactive peptides: Novel applications for milk proteins. Applied Biotechnology, Food Science and Policy, 1: 133–144.
  • Korhonen, H., Pihlanto. A. (2003). Food-derived bioactive peptides opportunities for designing future foods. Curr. Pharm. Des. 9: 1297–1308.
  • Korhonen, H., Pihlanto, A. (2006). Bioactive peptides: production and functionality. International Dairy Journal, 16: 945–960.
  • Korhonen, H. (2009). Milk-derived bioactive peptides: from science to applications. Journal of Functional Foods, 1: 177–187.
  • Kumagai, H. (2010). Wheat proteins and peptides. In: Mine, Y., Li-Chan, E., Jiang, B., (eds), Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals, 289–303.
  • Lafarga, T., Hayes, M. (2014). Bioactive peptides from meat muscle and byproducts: generation, functionality and application as functional ingredients. Meat Science, 98: 227–239.
  • Lassoued, I., Mora, L., Barkia, A., Aristoy, M.-C., Nasri, M., Toldra, F. (2015). Bioactive peptides identified in thornback ray skin’s gelatin hydrolysates by proteases from Bacillus subtilis and Bacillus amyloliquefaciens. Journal of Proteomics, 128: 8–17.
  • Li, Y., Yu, J. (2015). Research progress in structure-activity relationship of bioactive peptides. Journal of Medicinal Food, 18: 147–156.
  • Lin, S., Guo, Y., You, Q., Yin, Y., Liu, J. (2011). Preparation of antioxidant peptide from egg white protein and improvement of its activities assisted by high-intensity pulsed electric field. Journal of the Science of Food and Agriculture, 92: 1554–1561.
  • Liu, R., Xing, L., Fu, Q., Zhou, G. H., Zhang, W. G. (2016). A review of antioxidant peptides derived from meat muscle and by-products. Antioxidants (Basel, Switzerland), 5: 32.
  • Masuda, O., Nakamura, Y., Takano, T. (1996). Antihypertensive peptides are present in aorta after oral administration of sour milk containing these peptides to spontaneously hypertensive rats. Journal of Nutrition, 126: 3063–3068.
  • Matar, C., LeBlanc, J. G., Martin, L., & Perdigo´ n, G. (2003). Biologically active peptides released in fermented milk: Role and functions. In E. R. Farnworth (Ed.), Handbook of fermented functional foods. Functional foods and nutraceuticals series, 177–201.
  • Mazorra-Manzano, M. A., Ramírez-Suarez, J. C., Yada, R. Y. (2017). Plant proteases for bioactive peptides release: A review. Critical reviews in food science and nutrition, 1-17.
  • Meisel, H., Bockelmann, W. (1999). Bioactive peptides encrypted in milk proteins: proteolytic activation and thropho-functional properties. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 76: 207–215.
  • Meisel, H., FitzGerald, R. J. (2003). Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Current Pharmaceutical Design, 9: 1289–1295.Meisel, H. (2005). Biochemical properties of peptides encrypted in bovine milkproteins. Current Medicinal Chemistry, 12: 1905–1919.
  • Mizushima, S., Ohshige, K., Watanabe, J., Kimura, M., Kadowaki, T., Nakamura, Y., et al. (2004). Randomized controlled trial of sour milk on blood pressure in borderline hypertensive men. American Journal of Hypertension, 17: 701–706.
  • Mohanty, D., Jena, R., Choudhury, P. K., Pattnaik, R., Mohapatra, S., Saini, M. R. (2016). Milk derived antimicrobial bioactive peptides: a review. International Journal of Food Properties, 19: 837–846.
  • Moller, N. P., Scholz-Ahrens, K. E., Roos, N., Schrezenmeir, J. (2008). Bioactive peptides and proteins from foods: indication for health effects. European Journal of Nutrition, 47: 171–182.
  • Murakami, M., Tonouchi, H., Takahashi, R., Kitazawa, H., Kawai, Y., Negishi, H., Saito, T. (2004). Structural analysis of a new anti-hypertensive peptide (β-lactosin B) isolated from a commercial whey product. Journal of Dairy Science, 87(7): 1967-1974.
  • Narai-Kanayama, A., Shikata, Y., Hosono, M., Aso, K. (2010). High level production of bioactive di- and tri-tyrosine peptides by proteasecatalysed reactions. J. Biotechnol., 150: 343–347.
  • Phelan, M., Aherne, A., FitzGerald, R. J., O’Brien, N. M. (2009). Casein-derived bioactive peptides: Biological effects, industrial uses, safety aspects and regulatory status. Int. Dairy J, 19: 643–654.
  • Pisoschi, A. M., Pop, A. (2015). The role of antioxidantss in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97: 55-74.
  • Pritchard, S. R., Phillips, M., Kailasapathy, K. (2010). Identification of bioactive peptides in commercial Cheddar cheese. Food Research International, 43: 1545–1548.
  • Przybylski, R., Firdaous, L., Châtaigné, G., Dhulster, P., Nedjar, N. (2016). Production of an antimicrobial peptide derived from slaughterhouse byproduct and its potential application on meat as preservative. Food Chemistry, 211: 306–313.
  • Ryan, J. T., Ross, R. P., Bolton, D., Fitzgerald, G. F., Stanton, C. (2011). Bioactive peptides from muscle sources: meat and fish. Nutrients, 3: 765–791.
  • Safitri, N. M., Herawati, E. Y., Hsu, J. L. (2017). Antioxidant Activity of Purified Active Peptide Derived from Spirulina platensis Enzymatic Hydrolysates. Research Journal of Life Science, 4:2, 119-128.
  • Selamassakul, O., Laohakunjit, N., Kerdchoechuen, O., Ratanakhanokchai, K. (2016). A novel multi-biofunctional protein from brown rice hydrolysed by endo/endo-exoproteases. Food & Function, 7: 2635–2644.
  • Singh, B. P., Vij, S., Hati, S. (2014). Functional significance of bioactive peptides derived from soybean. Peptides, 54: 171–179.
  • Sipola, M., Finckenberg, P., Korpela, R., Vapaatalo, H., Nurminen, M. L. (2002). Effect of long-term intake of milk products on blood pressure in hypertensive rats. Journal of Dairy Research, 69: 103–111.
  • Su, X., Dong, C., Zhang, J., Su, L., Wang, X., Cui, H., Chen, Z. (2014). Combination therapy of anti-cancer bioactive peptide with Cisplatin decreases chemotherapy dosing and toxicity to improve the quality of life in xenograft nude mice bearing human gastric cancer. Cell Biosci, 4: 7.
  • Temple, N. J., Machner, A. (ed.) (2001). Antioxidants in Health and Disease. In Nutritional Health: Strategies for Diesease Prevention. Wilson, T. and Temple, N. J., Humana Press, Totowa, pp. 89-100.
  • Torres-Llanez, M. de J., Vallejo-Cordoba, B., Gonzalez-Cordova, A. F. (2005). Bioactive peptides derived from milk proteins. Archivos Latinoamericanos De Nutricion, 55: 111–117.
  • Walther, B., Sieber, R. (2011). Bioactive proteins and peptides in foods. International Journal for Vitamin and Nutrition Research, 81: 181–191.
  • Wu, J., Majumder, K., Gibbons, K. (2010). Bioactive proteins and peptides from egg proteins. In: Mine, Y., Li-Chan, E., Jiang, B., (eds), Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals, 247–263.
  • Yardım, N., Kocadağ, S., Kelat, E. Z., Adıgüzel, Ö. S., Atabey, M. veSaygı, M. (2017). Birinci Basamak Sağlık Kurumları İçin Obezite ve Diyabet Klinik Rehberi. Türkiye Halk Sağlığı Kurumu, Yayın No 1070. https://hsgm.saglik.gov.tr/depo/birimler/saglikli-beslenme-hareketli-hayat-db/Diyabet/diyabet-rehberleri/Obezite-ve-Diyabet-Klinik-Rehberi.pdf
  • Yu, Z., et al. (2011). Characterization of ACE-inhibitory peptide associatedwith antioxidant and anticoagulation properties. Journal of Food Science, 76: C1149–C1155.
  • Zambrowicz, A., et al. (2015). Multifunctional peptides derived from an egg yolk protein hydrolysate: isolation and characterization. Amino Acids, 47: 369–380.
  • Zhang, J., Zhang, H., Wang, L., Guo, X., Wang, X., Yao, H. (2010). Isolation and identification of antioxidative peptides from rice endosperm protein enzymatic hydrolysate by consecutive chromatography and MALDI-TOF/TOF MS/MS. Food Chemistry, 119(1): 226-234.
  • Zhong, F., Liu, J., Ma, J., & Shoemaker, C. F. (2007). Preparation of hypocholesterol peptides from soy protein and their hypocholesterolemic effect in mice. Food research international, 40(6): 661-667.