Matematik Öğretmeni Adaylarının Belirli İntegral Konusunda Kullanılan Temsiller ile İşlemsel ve Kavramsal Bilgi Düzeyleri

Bir konunun kavramsal olarak öğrenilebilmesi, kavram bilgisi ile işlem bilgisi arasında ilişki kurabilmesi ile mümkündür. Analiz dersinin temel konuları arasında yer alan belirli integral kavramının öğrenilmesi sürecinde de çeşitli zorluklar yaşanmakta ve yaşanan bu zorluğun, kavram-işlem bilgisi arasında bağ kurma olanağı sağlayan çoklu temsil bilgisi eksikliğinden kaynaklandığı düşünülmektedir. Bu çalışma, belirli integral konusunda kullanılan temsiller ve bu temsiller ile kavram-işlem bilgisi arasındaki ilişkiyi araştırmayı amaçlamaktadır. Araştırma, nitel yorumlayıcı paradigmaya sahip özel durum çalışması olup, çalışma grubunu bir devlet üniversitesinin matematik öğretmenliği ikinci sınıf programına kayıtlı 45 öğretmen adayı oluşturmaktadır. Veri toplama aracı olarak; belirli integral yeterlik testi, temsil tercih ve dönüşüm testi, yarı yapılandırılmış görüşme ve doküman analizi kullanılmıştır. Bulgular, öğretmen adaylarının belirli integral problemlerini çözme sürecinde, cebirsel temsillere yöneldiklerini göstermiştir. Kavram bilgisi yönüyle başarılı adaylar, farklı temsilleri ilişkilendirerek kullanabilirken, işlem bilgisi yönüyle başarılı adaylar, cebirsel temsilleri daha çok kullanmışlardır

Mathematics Teacher Candidates’ Multiple Representation and Conceptual-Procedural Knowledge Level in Definite Integral

Learning a subject conceptually requires establishing a relationship between the conceptual and the operational knowledge. Definite integral, being one of the topics of the calculus course is where learners face extensive learning difficulties mostly stemming from the lack of the knowledge of multiple representations. It is thought that the conceptual and the operational knowledge that mathematics teacher candidates influences the skill of using multiple representations. The study uses a case study approach which is based on an interpretivist qualitative paradigm. The participants of the study are 45 teacher candidates who are in their second year in the mathematics teacher training program of a state university. The data collection instruments were definite integral competency test, representation preference and transition test, semi structured interviews and document analysis. Findings suggest that algebraic representations are the dominant type in candidates’ solutions of integral problems. Candidates who are successful in terms of conceptual knowledge tend to use the representations more interrelated. Candidates who are successful in terms of operational knowledge tend mostly to use algebraic representations

___

  • Aydın, E., & Delice, A. (2008). Ölçme ve değerlendirmeye kavram yanılgıları perspektifinden bir bakış. M. F. Özmantar, E. Bingölbali & H. Akkoç (Edt.), Matematiksel kavram yanılgıları ve çözüm önerileri içinde (393- 436). Ankara: PegemA.
  • Baki, A., & Kartal, T. (2004). Kavramsal ve işlemsel bilgi bağlamında lise öğrencilerinin cebir bilgilerinin karakterizasyonu. Türk Eğitim Bilimleri Dergisi, 2(1), 27-46.
  • Berry, J., & Nyman, M. (2003). Promoting students’ graphical understanding of the calculus. Journal of Mathematical Behavior, 22, 481-497.
  • Bingölbali, E. (2008). Türev kavramına ilişkin öğrenme zorlukları ve kavramsal anlama için öneriler. M. F. Özmantar, E. Bingölbali & H. Akkoç (Edt.), Matematiksel kavram yanılgıları ve çözüm önerileri içinde (223-255). Ankara: PegemA.
  • Calvo, C. (1997). Bases para una propuesta dida´ctica sobre integrales, Tesis de Maestrı´a, Universitat Auto`noma de Barcelona.
  • Camacho, M., Depool, R, & Santos-Trigo, M. (2009). Students’ use of derive software in comprehending and making sense of definite integral and area concepts. CBMS Issues in Mathematics Education, 16, 35-67.
  • Cohen, L., Manion, L., & Morrison, K. (2000). Research methods in education). London: Routledge.
  • Delice,A. & Sevimli, E. (2010). “Öğretmen Adaylarının Çoklu Temsil Kullanma Becerilerinin Problem Çözme Başarıları Yönüyle İncelenmesi: Belirli İntegral Örneği”. Kuram ve Uygulamada Eğitim Bilimleri / Educational Sciences: Theory & Practice. 10 (1), 111-149
  • Dufour-Janvier, B., Berdnarz, N., & Belanger, M. (1987). Pedagogical considerations concerning the problem of representation. In C. Janvier (Eds.), Problems of representations in the teaching and learning of mathematics (pp.109-122). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Ersoy, Y. (2002) “Matematik okur yazarlığı-II:Hedefler, geliştirilecek yetiler ve beceriler”. (Düzenleme:O. Çelebi, Y. Ersoy, G. Öner) Matematik Etkinlikleri Sempozyum-2002 Bildiriler Kirtabı, Ankara: Matematikçiler Derneği Yay.
  • Finney, R., Thomas, G., Demana, F., & Waits, B. (1994). Calculus. Redwood City, CA: Addison-Wesley Publishing Company.
  • Girard, N. R. (2002). Students' representational approaches to solving calculus problems: Examining the role of graphing calculators. Unpublished EdD, Pittsburg: University of Pittsburg.
  • Goerdt, L. S. (2007). The effect of emphasizing multiple representations on calculus students’ understanding of the derivative concept. Unpublished doctoral dissertation, Education, Curriculum and Instruction, The University of Minnesota.
  • Goldin, G. A. (2004). Representations in school mathematics: A unifying research perspectives. In J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. 275-285). Reston, VA: NCTM.
  • Goldin, G. A., & Kaput, J. J. (1996). A joint perspective on the idea of representation in learning and doing mathematics. In L. P. Steffe, P. Nesher, P. Cobb, G. A. Goldin, & B. Greer (Eds.), Theories of mathematical learning (pp. 397-430). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Guba, E. G., & Lincoln, Y. S. (1994). Competing paradigms in qualitative research. In N. Denzin, & Y. Lincoln (Eds.), Handbook of qualitative research (pp. 105-117). London: Sage Publications.
  • Haapasalo, L., & Kadijevich, Dj. (2000). Two types of mathematical knowledge and their relation. Journal für Mathematik-Didaktik, 21, 2, 139-157.
  • Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65-97). New York: Macmillan.
  • Hiebert, J., & LeFevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 1-27). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
  • Janvier, C. (1987). Problems of representation in the teaching and learning of mathematics. Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Kaput, J. J. (1998). Representations, inscripions, descriptions and learning: A kaleidoscope of windows. Journal of Mathematical Behavior, 17 (2), 265- 281.
  • Keller, B. A., & Hirsch, C. R. (1998). Student preferences for representations of functions. International Journal in Mathematics Education Science Technology, 29 (1), 1-17.
  • Kendal, M., & Stacey, K. (2003). Tracing learning of three representations with the differentiation competency framework Mathematics Education Research Journal, 15 (1), 22- 41.
  • Kendal, M. (2002). Teaching and learning introductory differential calculus. Unpublished doctoral dissertation, The University of Melbourne, Australia. Available: http://thesis.lib.unimelb.edu.au/.
  • Kilpatrick, J. (1992). A history of research in mathematics education. Handbook of research on mathematics teaching and learning. D. Grouws. New York, Macmillan: 3-38.
  • Lesh, R., & Doerr, H. (2003). Foundations of a models and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh, & H. Doerr (Eds.) Beyond constructivism (pp. 3-34). Hillsdale, NJ: Erlbaum.
  • Mundy, J. (1984). Analysis of Errors of First Year Calculus Student’s. In Theory Research and Practice in Mathematics Education. In Bell, A.; Low B. and Kilpatrick J., (eds.). Proceedings, ICME 5. Adelaide, 1984. Working group reports and collected papers. Shell Center, Nottingham, UK, 170- 172.
  • NCTM. (2000). Principles and standards for school mathematics. Reston, VA: NCTM Publications.
  • Orton, A. (1983). Student’s understanding of integration. Educational Studies in Mathematics, 14 (1), 1-18.
  • Ostebee, A., & Zorn, P. (1997). Calculus from graphical, numerical and symbolic points of view. Fort Worth, TX: Saunder College Publishing.
  • Özgün-Koca, S. A. (2004). Bilgisayar ortamındaki çoğul bağlantılı gösterimlerin öğrencilerin doğrusal ilişkileri öğrenmeleri üzerindeki etkileri. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 26, 82-90.
  • Patton, M. Q. (1990). How to use qualitative methods in evaluation. London: Sagem Publications.
  • Porzio, D. (1999). Effects of differing emphases in the use of multiple representationsand technology on students’ understanding of calculus concepts. Focus On Learning Problems in Mathematics, 21 (3), 1-29.
  • Rasslan, S., & Tall, D. (2002). Definitions and images for the definite integral concept. In Cockburn A., & Nardi, E. (Eds.). Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education, (July 21-26), Vol. 4, 89-96, Norwich: England.
  • Sealey L. V. (2008). Calculus students’ assimilation of riemann integral into a previously established limit structure. Unpublished doctoral thesis, Mathematics education, The Arizona State University.
  • Sevimli, E. (2009). Matematik öğretmen adaylarının belirli integral konusundaki temsil tercihlerinin uzamsal yetenek ve akademik başarı bağlamında incelenmesi. Yayımlanmamış yüksek lisans tezi, Marmara Üniversitesi Eğitim Bilimleri Enstitüsü, İstanbul.
  • Sevimli, E., Delice, A., & Yengin, N. E. (2009). Analiz dersi öğrencilerinin belirli integral konusundaki çoklu temsil kullanma becerilerinin incelenmesi. 18. Ulusal Eğitim Bilimleri Kongresi, Ege Üniversitesi. İzmir.
  • Skemp, R. R. (1976). Relational understanding and instrumental understanding’, Mathematics Teaching 77, 20–26.
  • Thomas, N., Mulligan, J. T., & Goldin, G. A. (2002). Children's representations and cognitive structural development of the counting sequence 1-100. Journal of Mathematical Behavior, 21, 117-133.
  • Thompson, P. (1994). Images of rate and operational understanding of the fundamental theorem of calculus. Educational Studies in Mathematics, 26 (2), 229-274.
  • Yıldırım, A. & Şimsek, H. (2006). Sosyal Bilimlerde Nitel Arastırma Yöntemleri, (6.Baskı). Seçkin Yayıncılık, Ankara.