Mevcut kömürlü bir termik santralin güneş destekli hibrit santrale dönüşümünün teknik ve ekonomik analizi

Bu çalışmada, mevcut kömür yakıtlı bir termik santrale yoğunlaştırılmış güneş enerjisi entegre edilerek elde edilen hibrit güç santralinin termodinamik ve ekonomik analizi yapılmıştır. Termodinamik etkiler incelenirken spesifik tarihler, zaman, güneş ışınımı şiddeti, güneş enerjisi santralinin alanı ve yük faktörü parametre olarak alınmıştır. Öncelikle termodinamik optimizasyon yapılarak güneş enerjisi santralinin alanı belirlenmiştir. Daha sonra belirli senaryolar çerçevesinde güneş enerjisinin yıllık elektrik üretimindeki payı ile yakıt ve emisyon tasarrufları hesaplanmıştır. Termodinamik analizler sonucunda, güneş alanının yüksek basınç ön ısıtıcılarına paralel olarak yerleştirilmesinin en uygulanabilir çözüm olduğu bulunmuştur. Ekonomik hesaplarda ise emisyon ve yakıt tasarrufları ile güneş enerjisinin yıllık elektrik üretimindeki payı dikkate alınarak yatırımın geri ödeme süresi bulunmuştur. Emisyon birim fiyatı ve güneş alanı birim fiyatının geri ödeme süresi üzerindeki etkisi incelenmiştir. En fazla yıllık yakıt ve emisyon tasarrufu sırasıyla 7003,667 t/yıl ve 7748,849 tCO2/yıl olarak Senaryo 7 için bulunmuştur. Güneş alanı birim fiyatının 132 €/m2 veya yenilenebilir enerji için sağlanan destek fiyatının 0,225 €/kWh olması durumunda geri ödeme süresinin 7 yıl olabileceği bulunmuştur. Sonuç olarak, Türkiye’de uygulanacak bu hibrit sistemin finansal açıdan gelecek yıllarda çok daha ekonomik olabileceği görülmüştür.

___

  • 1. Çetin B., An economic model for the revamping of a pulverized coal-fired boiler, Energy Sources Part B: Economics, Planning, and Policy, 9 (3), 307-313, 2014.
  • 2. Gökırmak H., The energy policies for a sustainable economic growth in Turkey, International Journal of Energy Economics and Policy (IJEEP), 7 (1), 55-61, 2017.
  • 3. Çetin B., Abacıoğlu M., Economic analysis for rebuilding of an aged pulverized coal-fired boiler with a new boiler in an aged thermal power plant, Advances in Mechanical Engineering, 5, 1-6, 2013.
  • 4. Erdem H.H., Dağdaş A., Sevilgen S.H., Çetin B., Akkaya A.V., Şahin B., Teke İ., Güngör C., Ataş S., Thermodynamic analysis of an existing coal-fired power plant for district heating/cooling application, Applied Thermal Engineering, 30 (2), 181-187, 2009.
  • 5. T.C. Enerji ve Tabii Kaynaklar Bakanlığı 2015-2019 Stratejik Planı, Enerji ve Tabii Kaynaklar Bakanlığı, Ankara, Aralık 2014.
  • 6. Toptaş M., Turkey’s energy demand, production and policies, International Journal of Energy Economics and Policy (IJEEP), 5 (2), 631-638, 2015.
  • 7. Türkiye Elektrik Üretim A.Ş. Türkiye elektrik üretim-iletim 2016 yılı istatistikleri.https://www.teias.gov.tr/tr/turkiye-elektrik-uretim-iletim-2016-yili-istatistikleri. Yayın tarihi Ekim 5, 2017. Erişim tarihi Nisan 6, 2018.
  • 8. Kömür Sektörü Raporu (Linyit) 2016, Enerji ve Tabii Kaynaklar Bakanlığı, Ankara, Mayıs 2017.
  • 9. Erdem H.H., Sevilgen S.H., Akkaya A.V., Çetin B., Emission assessment for cogeneration systems, Energy Sources Part B: Economics, Planning, and Policy, 2 (3), 267-275, 2007.
  • 10. Energy policies of IEA countries Turkey 2016 review, International Energy Agency, Eylül 2016.
  • 11. Karbon Piyasalarında Ulusal Deneyim ve Geleceğe Bakış, Çevre ve Şehircilik Bakanlığı, Ankara, Ocak 2011.
  • 12. Jin H.G., Hong H., Hybridization of Concentrating Solar Power (CSP) With Fossil Fuel Power Plants, Concentrating Solar Power Technology Principles, Developments and Applications, Cilt 2, Editörler: Lovegrove K., Stein W., Woodhead Publishing, Cambridge UK, 395-436, 2012.
  • 13. Yang Y., Cuı Y., Hou H., Guo X., Yang Z., Wang N., Research on solar aided coal-fired power generation system and performance analysis, Science China Technological Sciences, 51 (8), 1211-1221, 2008.
  • 14. Gupta M.K., Kaushik S.C., Exergetic utilization of solar energy for feed water preheating in a conventional thermal power plant, International Journal of Energy Research, 33 (6), 593-604, 2009.
  • 15. Hou H., Mao J., Yang Y., Luo N., Solar-coal hybrid thermal power generation-an efficient way to use solar energy in China, International Journal of Energy Engineering, 2 (4), 137-142, 2012.
  • 16. Hong H., Peng S., Zhao Y., Liu Q., Jin H., A typical solar-coal hybrid power plant in China, Energy Procedia, 49, 1777-1783, 2014.
  • 17. Zhao Y., Hong H., Jin H., Economic analysis of a typical solar-coal hybrid power plant, Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 38 (12), 1798-1804, 2016.
  • 18. Suresh M.V.J.J., Reddy K.S., Kolar A.K., 4-E (Energy, exergy, environment, and economic) analysis of solar thermal aided coal-fired power plants, Energy for Sustainable Development, 14 (4), 267-279, 2010.
  • 19. Popov D., An option for solar thermal repowering of fossil fuel fired power plants, Solar Energy, 85 (2), 344-349, 2011.
  • 20. Zhao H., Bai Y., Thermodynamic performance analysis of the coal-fired power plant with solar thermal utilizations, International Journal of Energy Research, 38 (11), 1446-1456, 2014.
  • 21. Yang Y., Yan Q., Zhai R., Kouzani A., Hu E., An efficient way to use medium-or-low temperature solar heat for power generation-integration into conventional power plant, Applied Thermal Engineering, 31 (2-3), 157-162, 2011.
  • 22. Yan Q., Yang Y., Zhai R., Evaluation of solar aided thermal power generation with various power plants, International Journal of Energy Research, 35 (10), 909-922, 2011.
  • 23. Zhai R., Zhu Y., Yang Y., Tan K., Hu E., Exergetic and parametric study of a solar aided coal-fired power plant, Entropy, 15 (3), 1014-1034, 2013.
  • 24. Zhao Y., Hong H., Jin H., Evaluation criteria for enhanced solar-coal hybrid power plant performance, Applied Thermal Engineering, 73 (1), 577-587, 2014.
  • 25. Feng L., Chen H., Zhou S., Zhang S., Yang T., An L., The development of a thermo-economic evaluation method for solar aided power generation, Energy Conversion and Management, 116, 112-119, 2016.
  • 26. Hou H., Wang M., Yang Y., Chen S., Hu E., Performance analysis of a solar-aided power generation (SAPG) plant using specific consumption theory, Science China Technological Sciences, 59 (2), 322-329, 2016.
  • 27. Ahmadi G., Toghraie D., Akbari O.A., Solar parallel feed water heating repowering of a steam power plant: A case study in Iran, Renewable and Sustainable Energy Reviews, 77, 474-485, 2017.
  • 28. Oktay Z., Investigation of coal-fired power plants in Turkey and a case study: Can plant, Applied Thermal Engineering, 29 (2-3), 550-557, 2009.
  • 29. Zhao Y., Hong H., Jin H., Optimization of the solar field size for the solar-coal hybrid system, Applied Energy, 185 (2), 1162-1172, 2017.
  • 30. STEAG Energy Services Gmbh. Ebsilon Professional. https://www.steag-systemtechnologies.com/en/products/ebsilon-professional, 2017.
  • 31. Erdem H.H., Akkaya A.V., Çetin B., Dağdaş A., Sevilgen S.H., Şahin B., Teke İ., Güngör C., Ataş S., Comparative energetic and exergetic performance analyses for coal-fired thermal power plants in Turkey, International Journal of Thermal Sciences, 48 (11), 2179-2186, 2009.
  • 32. Telli Z.K., Yakıtlar ve Yanma, Palme Yayıncılık, Ankara, Türkiye, 1998.
  • 33. Kaushik S.C., Singh O.K., Estimation of chemical exergy of solid, liquid and gaseous fuels used in thermal power plants, Journal of Thermal Analysis & Calorimetry, 115 (1), 903-908, 2014.
  • 34. Ehsan A., Yılmazoğlu M.Z., Design and exergy analysis of a thermal power plant using different types of Turkish lignite, International Journal of Thermodynamics (IJoT), 14 (3), 125-133, 2011.
  • 35. Mills D.R., Linear Fresnel Reflector (LFR) Technology, Concentrating Solar Power Technology Principles, Developments and Applications, Cilt 2, Editörler: Lovegrove K., Stein W., Woodhead Publishing, Cambridge UK, 153-196, 2012.
  • 36. Novatec Solar. NOVA-1 technical data.http://www.novatecsolar.com/files/mne1405_broschure_novatec_solar.pdf. Yayın tarihi Şubat 20, 2013. Erişim tarihi Nisan 6, 2018.
  • 37. Zhai R., Peng P., Yang Y., Zhao M., Optimization study of integration strategies in solar aided coal-fired power generation system, Renewable Energy, 68, 80-86, 2014.
  • 38. European Commission Joint Research Centre Photovoltaic Geographical Information System. Typical Meteorological Year.http://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#TMY. Güncelleme tarihi Eylül 21, 2017. Erişim tarihi Nisan 6, 2018.
  • 39. Schenk H., Hirsch T., Feldhoff J.F., Wittmann M., Energetic comparison of linear fresnel and parabolic trough collector systems, Journal of Solar Energy Engineering, 136 (4), 1-11, 2014.
  • 40. Giostri A., Binotti M., Silva P., Macchi E., Manzolini G., Comparison of two linear collectors in solar thermal plants: Parabolic trough vs fresnel, Proceeding of the ASME 2011 5th International Conference on Energy Sustainability, Washington DC-USA, 621-630, 7-10 Ağustos, 2011.
  • 41. Kalogirou S.A., Solar Energy Engineering Processes and Systems, Academic Press, Waltham, USA, 2014.
  • 42. Morin G., Lerchenmüller H., Mertins M., Ewert M., Fruth M., Bockamp S., Griestop T., Haberle A., Plug-in strategy for market introduction of fresnel-collectors, 12th SolarPACES Conference, Oaxaca-Mexico, Kasım, 2004.
  • 43. European Energy Exchange. Environmental Markets.https://www.eex.com. Güncelleme tarihi Nisan 6, 2018. Erişim tarihi Nisan 6, 2018.
  • 44. Enerji Piyasası Düzenleme Kurumu. Yenilenebilir Enerji Kaynakları Destekleme Mekanizması (YEKDEM).www.epdk.org.tr/TR/Dokuman/6886. Erişim tarihi Nisan 6, 2018.
  • 45. Solar Thermal Electricity Global Outlook 2016, Greenpeace International, European Solar Thermal Electricity Association, SolarPACES, 2016.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ