Klinoptilolit Destekli, Polivinil Alkol Bazlı Kompozit Membran Sentezi, Karakterizasyonu Ve Yakıt Hücresi Performans Testleri

Bu çalışmada proton değişim membranlı yakıt hücrelerinde (PDMYH) sıklıkla kullanılan perflorosülfonik asitli membranlara alternatif olabilecek proton iletkenliği, iyon değişim kapasitesi ve kimyasal kararlılığı yüksek kompozit membran sentezi amaçlanmıştır. Farklı oranlarda (%0, %5, %10, %15, %20, %25, %30) klinoptilolit katılarak klasik sol-jel yöntemiyle hipofosforöz asit (H3PO2) katkılı polivinil alkol (PVA) bazlı membranlar sentezlenmiştir. Sentezlenen membranların su tutma kapasiteleri, şişme özellikleri, iyon değişim kapasiteleri, proton iletkenlikleri ve yakıt hücresi performans testleri gerçekleştirilmiştir. Deneylerde en yüksek performans değeri 0,6 V’da 540 mA/cm2 ile %15 klinoptilolit katkılı membrandan elde edilmiştir. Bu membranın su tutma kapasitesi değeri %48, kalınlık değişimi %6, yüzey alanı değişimi %4, iyon değişim kapasitesi 0,86 meq/g ve proton iletkenliği de 0,064 S/cm olarak bulunmuştur. Elde edilen değerler perflorosülfonik asitli membranlara yakın olup yakıt hücresinde kullanılabilirlik açısından umut vericidir.kapasitesi değeri %48, kalınlık değişimi %6, yüzey alanı değişimi %4, iyon değişim kapasitesi 0,86 meq/g ve proton iletkenliği de 0,064 S/cm olarak bulunmuştur. Elde edilen değerler perflorosülfonik asitli membranlara yakın olup yakıt hücresinde kullanılabilirlik açısından umut vericidir.

SYNTHESIS, CHARACTERIZATION AND FUEL CELL PERFORMANCE TESTS OF POLYVINYL ALCOHOL BASED COMPOSITE MEMBRANE WITH CLINOPTILOLITE SUPPORT

In this study it is aimed to synthesize a composite membrane with high proton conductivity, ion exchange capacity and high chemical stability, as an alternative to the perflourosulfonic acid membranes that widely used in proton exchange membrane fuel cells (PEMFCs). For this purpose PVA based membranes containing hypophosphorous acid (H3PO2) as additive and clinoptilolite in different ratios (%5, %10, %15, %20, %25, %30) were synthesized by means of classical sol-gel method. Water holdup, swelling, ion exchange capacities, proton conductivity and fuel cell performance tests of synthesized membranes were carried out. Highest performance values were obtained as 540 mA/cm2 at 0.6 V for the membrane containing 15% clinoptilolite. Water holdup, change in thickness, surface area change, ion exchange capacity and proton conductivity values were obtained as 48%, 6%, 4%, 0.86 meq/g and 0.064 S/cm respectively, for this membrane. Characterization experiments results are close to the values reported for the perfluorosulfonic acid membranes and hence promising for the use of these membranes in fuel cells. 

___

  • Wang, S.J., Zhang, Y.F., Shu,D., Tian, S.H., Mei,
  • D.H., Xiao, M., Meng,Y.Z., “Portable PEMFC
  • stack using sulfonated poly(fuorenyl ether
  • ketone) ionemer as membrane”, International
  • Journal of Hydrogen Energy, 37 (5): 4539-4544,
  • -
  • Chandan, A., Hattenberger, M., Kharouf, A.E.,
  • Du, S., Dhir, A., Self, V., Pollet, B.G., Ingram,
  • A., Bujalski, W., “High temperature (HT)
  • polymer electrolyte membrane fuel celss
  • (PEMFC) – A review” Journal of Power
  • Sources, 231 (1): 264-278, 2013.
  • Zhai, Y., Zhang, H., Zhang, Y. And Xing, D., “A
  • novel H3PO4/Nafyon–PBI composite membrane
  • for enhanced durability of high temperature PEM
  • fuel cells”, Journal of Power Sources, 169 (2):
  • -264, 2007.
  • Holmberg, B. A., Wang, X. And Yan, Y.,
  • “Nanocomposite fuel cell membranes based on
  • Nafion and acid functionalized zeolite beta
  • nanocrystals ”, Journal of Membrane Science,
  • (1-2): 86-92, 2008.
  • Yuan, J. And Zhou, G., “Preparation and
  • properties of Nafion/hollow silica spheres
  • composite membranes”, Journal of Membrane
  • Science, 325:742–748, 2008.
  • Wang, L., Xing, D.M., Liu, Y.H., Cai, Y.H.,
  • Shao, Z.G., Zhai, Y.F., Zhong, H.X., Yi, B.L.
  • And Zhang, H.M., “Pt/SiO2 catalyst as an
  • addition to Nafion/PTFE self-humidifying
  • composite membrane”, Journal of Power
  • Sources, 161 (1): 61-67, 2006.
  • Zhai, Y., Zhang, H., Hu, J., Yi, B., “Preparation
  • and characterization of sulfonated zirconia (SO4
  • -
  • /ZrO2)Nafion composite membranes for PEMFC
  • operation at high temperature/low humidity ”,
  • Journal of Membrane Science, 280: 148-155,
  • -
  • DeLuca, N.W. And Elabd, Y.A., “Direct
  • methanol fuel cell performance of
  • Nafion®/poly(vinyl alcohol) blend membranes”,
  • Journal of Power Sources, 163 (1): 386-391,
  • -
  • Son, D. H., Sharma, R. K., Shul, Y. G., Kim, H.,
  • “Preparation of Pt/zeolite–Nafion composite
  • membranes for self-humidifying polymer
  • electrolyte fuel cells”, Journal of Power
  • Sources., 165 733–738, 2007.
  • Holmberg, B. A., Wang, X., Yan, Y.,
  • “Nanocomposite fuel cell membranes based on
  • Nafion and acid functionalized zeolite beta nanocrystals ”, Journal of Membrane Science.,
  • (1-2):86-92, 2008.
  • Cli, C., Sun, G., Ren, S., Liu, J., Wang, Q., Wu,
  • Z., Sun, H., Jin W., “Casting Nafion-sulfoned
  • organosilica nano-composite membranes used in
  • direct methanol fuel cells”, Journal of
  • Membrane Science., 272 (1-2): 50-57, 2006.
  • Wu, Z., Sun, G., Jin, W., Hou, H., Wang, S., Xin,
  • Q., “Nafion andnano-size TiO2 – SO4
  • - solid
  • superacid composite for direct methanol fuel
  • cell”, Journal of Membrane Science., 313(2):
  • -343, 2008.
  • Ladewig, B. P., Knott, R. B., Martin, D. J., Diniz
  • da Costa, J. C., Lu, G. Q., “Nafion-MPMDMS
  • nanocomposite membranes with low methanol
  • permeability”, Electrochemistry
  • Communications, 9 781-786, 2007.
  • Kim, D., Scibioh, AM. A., Kwak, S., Oh, I. H.,
  • Ha, H. Y., “Nano-silica layered composite
  • membranes prepared by PECVD for direct
  • methanol fuel cells”, Electrochemistry
  • Communications, 6 1069-1074, 2004.
  • Di Vona, M. L. And Luchetti, L., “Synthetic
  • strategies for the preparation of protonconducting
  • hybrid polymers based on PEEK and
  • PPSU for PEM fuel cells”, Comptes Rendus
  • Chimie, 11: 1074-1081, 2008.
  • Martinelli, A., Matic, A., Jacobsson, P.,
  • Börjesson, L., Navara, M.A., Munaò, D., Panero,
  • S. And Scrosati, B., “A study on the state of
  • PWA in PVDF-based proton conducting
  • membranes by Raman spectroscopy”, Solid State
  • Ionics, 178 (7-10): 527-531, 2007.
  • Huang, H.S., Chen, C.Y., Lo, S.C., Lin, C.J.,
  • Chen, S.J. And Lin, L.J., “Identification of ionic
  • aggregates in PVDF-g-PSSA membrane by
  • tapping mode AFM and HADDF STEM”,
  • Applied Surface Science, 253 (5): 2685-2689,
  • -
  • Shen, Y., Xi, J., Zhu, W., Chen, L. And Qui, X.,
  • “A nanocomposite proton exchange membrane
  • based on PVDF, poly (2-acrylamido-2-methyl
  • propylene sulfonic acid), and nano-Al2O3 for
  • direct methanol fuel cells”, Journal of Power
  • Sources, 159 (2): 894-899, 2006.
  • Martinelli, A., Navara, A., Matic, A., Panero, S.,
  • Jaconsson, P., Börjesson, L. And Scrosati, B.,
  • “Structure and functionality of PVdF/PAN based,
  • composite proton conducting membranes”,
  • Electrochimica Acta, 50 (19): 3992-3997, 2005.
  • Prakash, G.K.S., Smart, M.C., Wang, Q.J., Atti,
  • A., Pleynet, V., Yang, B., McGrath, K., Olah,
  • G.A., Narayanan, S.R., Chun, W., Valdez, T. And
  • Surampudi, S., “High efficiency direct methanol
  • fuel cell based on poly(styrenesulfonic) acid
  • (PSSA)– poly(vinylidene fluoride) (PVDF)
  • composite membranes”, Journal of Fluoribe
  • Chemistry, 125 (8): 1217-1230, 2004.
  • Cui, Z., Xing, W., Liu, C., Liao, J. And Zhang,
  • H., “Chitosan/heteropolyacid composite membranes for direct methanol fuel cell”,
  • Journal of Power Sources, 188: 24-29, 2009.
  • Gribov, E. N., Parkhomchuk, E. V., Krivobokov,
  • I. M:, Darr, J. A., Okunev, A. G., “Supercritical
  • CO2 assisted synthesis of highly selective
  • nafion–zeolite nanocomposite membranes for
  • direct methanol fuel cells”, Journal of
  • Membrane Science., 297(1): 1–4, 2007.
  • Wu, H., Zheng, B., Zheng, X., Wang,J., Yuan,
  • W., Jiang “Surface-modified Y zeolite-filled
  • chitosan membrane for direct methanol fuel cell”,
  • Journal of Power Sources., 173 842–852, 2007.
  • Wang, J., Zheng, X., Wu, H., Zheng, B., Jiang,
  • Z., Hao, X., Wang, B., “Effect of zeolites on
  • chitosan/zeolite hybrid membranes for direct
  • methanol fuel cell”, Journal of Power Sources,
  • (1):9–19, 2008.
  • Lin, C.W., Huang, Y.F. And Kanan, A.M.,
  • “Semi-interpenetrating network based on crosslinked
  • poly(vinyl alcohol) and poly(styrene
  • sulfonic acid-co-maleic anhydride) as proton
  • exchange fuel cell membranes”, Journal of
  • Power Sources, 164 (2): 449-456, 2007.
  • Binsu, V.V., Nagarele, R.K., Shahi, V.K. And
  • Ghosh, P.K., “Studies on N-methylene
  • phosphonic chitosan/poly(vinyl alcohol)
  • composite proton-exchange membrane”, Reactive
  • and Functional Polymers, 66 (12): 1619-1629,
  • -
  • Wu, C.S., Lin, F.Y., Chen, C.Y. And Chu, P.P.,
  • “A polyvinyl alcohol/p-sulfonate phenolic resin
  • composite proton conducting membrane”,
  • Journal of Power Sources, 160 (2): 1204-1210,
  • -
  • Son, J.H., Kang, Y.S. And Won, J., “Poly(vinyl
  • alcohol) -based polymer electrolyte membranes
  • containing polyrotaxane”, Journal of Membrane
  • Science, 281 (1-2): 345-350, 2006.
  • Şahin, A., Aktan, H., Balbaşı, M., Ar, İ.,
  • “Synthesis And Characterization Of
  • Phosphonated Poly(Vinyl Alcohol) Based
  • Membrane With Silica Support” , J. Fac. Eng.
  • Archit. Gazi Univ. 25(4): 693-699, 2010.
  • Şahin, A., Balbaşı, M., Ar, İ., “Synthesis and
  • Characterization of Sulphonated
  • Polystyrene/Polyvinyl Alcohol Composite
  • Membrane with Boric Acid and Boron Phosphate
  • Support” , J. Fac. Eng. Archit. Gazi Univ. 24,
  • (1): 137-144, 2009.
  • Pedicini, R., Sacca, A., Carbobe, A., Patti, A.,
  • Passalacqua, E., “Study on sulphonated
  • polysulphone/polyurethane blend membranes for
  • fuel cell applications”, Chemical Physical
  • Letters, 579(2): 100-104, 2013.
  • Kim, J.D., Donnadio, A., Jun, M.S., Vona,
  • M.L.D., “Crosslinked SPES-SPPSU membranes
  • for high temperature PEMFCs”, International
  • Journal of Hydrogen Energy, 38 (3): 1517-1523,
  • -
  • Lulianelli, A., Gatto, I., Passalacqua, E., Trotta,
  • F., Biasizzo, M., Basile, A., “Proton conducting
  • membranes based on sulfonated PEEK-WC
  • polymer for PEMFCs”, Internationa Journal of
  • Hydrogen Energy, http://dx.doi.org/10.1016/
  • j.ijhydene.2013.05.151, 2013.
  • Abu-Thabit, N.Y., Ali, S.A., Zaidi, S.M.J., “New
  • highly phosphonated polysulfone membranes for
  • PEM fuel cells” Journal of Membrane Science,
  • (1-2): 26-33, 2010.
  • Abouzari-Lotf, E., Ghassemi, H., Shockravi, A.,
  • Zawodzinski, T., Schiraldi, D., “Phosphonated
  • poly(arylene ether)s as potential high temperature
  • proton conducting materials” Polymer, 52 (21):
  • -4717, 2011.
  • PArcero, E., Herrera, R., Nunes,S.P.,
  • “Phosphonated and sulfonated
  • polyhphenylsulfone membranes for fuel cell application”, Journal of Membrane Science, 285
  • (1-2): 206-213, 2006.
  • Holmberg, B.A., Wang, X., Yan, Y.,
  • “Nanocomposite fuel cell membranes based on
  • Nafion and acid functionalized zeolite beta
  • nanocrystals”, Journal of Membrane Science,
  • (1-2): 86-92, 2008.
  • Şengül, E., Erdener, H., Akay, R.G., Yücel, H.,
  • Baç, N., Eroğlu, İ., “Effects of sulfonated
  • polyether-etherketone (SPEEK) and composite
  • membranes on the proton Exchange membrane
  • fuel cell (PEMFC) performance”, International
  • Journal of Hydrogen Energy, 34 (10): 4645-
  • , 2009.
  • Yu, D.M., Yoon, Y.J., Kim, T.H., Lee, J.Y.,
  • Hong, Y.T., “Sulfonated poly(arylene ether
  • sulfone)/sulfonated zeolite composite membrane
  • for high temperature proton Exchange fuel cells”
  • Solid State Ionics, 233(1): 55-61, 2013.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ