KESİCİ TAKIM GERİLMELERİNİN SONLU ELEMANLAR METODU KULLANILARAK İNCELENMESİ

Bu çalışmada, Al 2007 alüminyum alaşımı malzemenin ortogonal (dik) kesme işleminde kullanılan 0.1, 0.2 ve 0.4 mm paso derinliğinin kesici takım gerilmeleri (normal, kayma ve von Mises) üzerindeki etkileri sonlu elemanlar metoduna dayalı ANSYS paket programı kullanılarak analiz edilmiş ve derinliğe bağlı olarak kesme kenarındaki gerilmelerin değişimi incelenmiştir. Esas kesme kuvveti ve pasif kuvvetin kesici takım üzerindeki etkisi, takım-talaş temas uzunluğu dikkate alınarak oluşturulan sonlu eleman modellerinde talaş yüzeyinde ve yardımcı yüzeyde normal ve teğetsel kuvvet bileşeni biçiminde uygulanmıştır. Analiz sonuçları, y-ekseni doğrultusundaki normal ve xy-düzlemindeki kayma gerilmelerinin kesici takımın ucundan takım-talaş temas uzunluğunun sonuna doğru azalmakta olduğunu ve dağılımlarının Lee ve Zorev’in normal gerilme dağılıma paralel bir biçimde gerçekleştiğini göstermektedir.

___

  • Östholm, S., Simulation and Identification of Mechanical Load in Cutting Edge, PhD. Thesis, Lund University, Sweden, 1986.
  • Taşgetiren, S., Aslantaş, K., Kurt, A., “Torna Kesme Kaleminde Gerilmeler: Sürtünme Kat-sayısının Etkisi”, ZKÜ Teknik Eğitim Fakül¬tesi Teknoloji Dergisi, Sayı 2–3, 1–10, 2000.
  • Shatla, M., Kerk, C., Altan, T., “Process Modelling In Machining. Part II: Validation and Applications of the Determined Flow Stress Data”, International Journal of Machine Tools & Manufacture, 41, 1659-1680, 2001.
  • Strenkowski, J.S., Moon, K.J., “Finite Element Prediction of Chip Geometry and Tool/Work Piece Temperature Distributions in Orthogonal Metal Cutting”, ASME Journal of Engineering for Industry, 112, 313-318, 1990.
  • Sasahara, H., Obikawa, T., Shirakashi, T., “FEM Analysis on Three Dimensional Cutting”, Inter. Journal of Japanese Society for Precision Engineering, 28 (2), 473-478, 1994.
  • Shih, A.J., “Finite Element Analysis of Orthogonal Metal Cutting Mechanics”, Interna-tional Journal of Machine Tools and Manufac-ture, 36, 255-273, 1996.
  • Shinozuka, J., Obikawa, T., Shirakashi, T., “Chip Breaking Analysis from the Viewpoint of The Optimum Cutting Tool Geometry Design”, Journals of Materials Processing Technology, 62, 345-351, 1996.
  • Ceretti, E., Fallböhmer, P., Wu, W.T., Altan, T., “Application of 2D FEM to Chip Formation in Orthogonal Cutting”, Journal of Materials Processing Technology, 59, 169-181, 1996.
  • Stevenson, M.G., Wright, P.K., Chow, J.G., “Further Development in Applying The Finite Element Method to the Calculation of Tempera-ture Distribution in Machining and Comparison with Experiment”, Journal of Engineering for Industry, 105, 149-154, 1983.
  • Iwata, K., Osakada, K., Terasaka, Y., “Process Modelling of Orthogonal Cutting by the Rigid-Plastic Finite Element Method”, Transactions of the ASME, Journal of Engineering for Industry, 106, 132-138, 1984.
  • Jain, V.K., Joshi, V.S., Dixit, P.M., “Viscoplastic Analysis of Metal Cutting by Finite Element Method”, International Journal of Machine Tools & Manufacture, 34, 553-570, 1993.
  • Ng, E., Aspinwall, D., Brazil, D., Monaghan, J., “Modelling of Temperature and Forces when Orthogonally Machining Hardened Steel, International Journal of Machine Tools & Manufacture, 39, 885-903, 1999.
  • Chandrasekar, H., Kapoor, D.V., “Photoelastic Analysis of Tool–Chip Interface Stresses”, ASME Journal of Engineering Industry, 87, 495–502, 1965.
  • Kato, S., Yamaguchi, K., Yamada, M., “Stress Distribution at the Interface between Tool and Chip in Machining”, ASME Journal of Engineering Industry, 94, 683-688, 1972.
  • Doyle, E.D., Horne, J.G., Tabor, D., “Frictional Interactions between Chip and Rake Face in Continuous Chip Formation”, Proc. R. Soc. Lond., (A) 366, 173–183, 1979.
  • Bagchi, A., Wright, P.K., Stress Analysis in Machining With the Use of Sapphire Tools, Proc. R. Soc. Lond., (A) 409, 99-113, 1987.
  • Childs, T., Mahdi, M., On the Stress Distribution between the Chip and Tool During Metal Turning, Ann. CIRP, 38(1), 55–58, 1989.
  • Barrow, G., Graham, W., Kurimoto, Leong, T., Y. F., “Determination of Rake Face Stress Distri¬bu-tion in Orthogonal Machining”, International Journal of Machine Tool Design and Re¬search, Vol. 22, No. 1, 75-85, 1982.
  • Li, X., “Development of a Predictive Model for Stress Distributions at the Tool-Chip Interface in Machining”, Journal of Materials Processing Technology, Vol. 63, No. 1-3, 169-174, 1997.
  • Kima, K.W., Leeb, W.Y., Sinc, H.C., “A Finite Element Analysis for the Characteristics of Temperature and Stress in Micro-Machining Considering the Size Effect”, International Journal of Machine Tools & Manufacture, Vol. 39, 1507–1524, 1999.
  • McClain, B., Batzer, S.A., Maldonado, G.I., “A Numeric Investigation of the Rake Face Stress Distribution in Orthogonal Machining”, Journal of Materials Processing Technology, Vol. 123, No. 1, 114-119, 2002.
  • Lee, L.C., Liu, X., Lam, K.Y., “Determination of Stress Distribution on the Tool Rake Face Using a Composite Tool”, International Journal of Machine Tools and Manufacture, Vol. 35, No. 3, 373-382, 1995.
  • Zorev, N.N., Inter-relationship between Shear Processes Occurring Along Tool Face and Shear Plane in Metal Cutting, ASME, International Research in Production Engineering, New York, 42-49, 1963.
  • Ziebeil, F., Mechanische und Thermische Belastung von Zerspanwerkzeugen. Dissertation, University of Hannover, Düsseldorf, VDI 1996, 1997 (in German).
  • Akkurt, M., Talaş Kaldırma Yöntemleri ve Takım Tezgahları, Birsen yayınevi, İstanbul, 1996.