Dijital Çağda Eğitim: Anatomi Eğitiminde Teknolojik Eğilimler

Tıp ve sağlık bilimlerindeki yeni gelişmeler, daha hızlı ve daha çok bilgi üretilmesine olanak sağlamıştır. Ancak üretilen bilginin artması, öğrencilere verilen Anatomi eğitiminin süresinde bir daralmaya yol açmıştır. Bu nedenle, Anatomi dersi veren öğretmenlerin, günümüzün yenilikçi dijital teknolojileri, alternatif öğrenme stratejileri ve alternatif eğitim araçlarını kullanmaları, anatomi öğretiminde etkinliği arttırma konusunda faydalı olabilir. Bu araştırma, Anatomi eğitiminin verildiği öğrenme ortamında kullanılabilecek interaktif dijital teknolojilere odaklanmak ve mevcut durumu daha anlaşılır hale getirmek için yapılan bir literatür incelemesidir. İncelemelerle elde edilen veriler araştırmacılar tarafından betimsel yaklaşımına uygun olarak değerlendirilmiş ve yorumlanmıştır. Yapılan çalışmalar incelendiğinde, Anatomi eğitiminde interaktif dijital teknolojilerin kullanımının yeterli ve yaygın olmadığı anlaşılmaktadır. Bu nedenle, bu çalışmanın amacı, Anatomi eğitiminde kullanılabilecek interaktif dijital teknolojilerin ve bu teknolojilerle beraber kullanılabilecek öğrenme/öğretme stratejilerin de neler olabileceği hakkında bilgi vermek ve bunların önemini ortaya koymaktır. Dijital teknolojilerin gelişmesi sadece sanayide, elektronikte, uzay bilimlerinde, tarımda veya tıp alanında değil aynı zamanda eğitimde de önemli etkiler yaratmıştır. Günümüzde dijital teknoloji, yeni verilerin oluşturulmasında ve bu verilerin yeni öğretim platformlarına aktarılmasında çeşitli olanaklar sağlamaktadır. Dijital teknolojinin etkisiyle, yüzlerce yıldır konservatif bir yapıda devam eden anatomi eğitiminin sınıf içi teorik derslerin yapısı pek değişmemiştir. Üstelik kadavra diseksiyonu üzerinden verilen uygulama eğitimi sorgulanmaya başlanmıştır. Bu durum anatomi eğitiminde ciddi bir dönüşümün öncü göstergesi olarak kabul edilebilir. Günümüzde dijital eğitim materyallerinin öğrenci ile etkileşim kurabiliyor (interaktif) hale gelmesi, bu dönüşümün en önemli tetikleyicisidir. Bazı çalışmalar göstermektedir ki öğrenciler, anatomik dokularla ilgili öğrenimlerini 3-boyutlu (3D) dijital kadavralar üzerinden yapabilmekte, bu ders materyallerine istedikleri zamanda, istedikleri yerden ulaşabiliyor ve istedikleri kadar tekrar yapabilmektedirler. Dijital çağın sunduğu bu yeni öğrenme materyalleri, her öğrenciyi kendi öğrenme hızına ve becerisine uygun biçimde zamanı daha etkin kullanmaya teşvik etmektedir. Ayrıca, öğrenme etkinliğini arttırmak için ters-yüz sınıf modelinin bir öğretme stratejisi olarak kullanılması; Kahoot, Classcraft, Plickers, Padlet gibi oyunlaştırma yöntemlerinin geliştirilmesi; infografiklerin kullanılması; mobil öğrenme araçlarının ve bunlara 33 ait programların da bu öğrenme ortamlarına entegre edilmesi ile dijital teknolojilerin eğitim alanına çok ciddi bir katkı sunma potansiyeli olduğunu göstermektedir. Sonuç olarak, bilginin daha iyi işlenmesini sağlayan, eğitimde zamanı ve mekanı daha etkin kullanmamızı mümkün kılan dijital çağın bu yeni ürünleri, günümüzde, emekleme safhasında olan arttırılmış gerçeklik, sanal gerçeklik, Web 4.0 ve yapay zeka gibi araçların da entegre edilmesiyle, eğitimde zamanı daha etkin kullanan, daha eşitlikçi eğitim ortamı, daha objektif ölçme ve değerlendirme yapabilme olanağı sağlayan yeni öğrenim platformları sunmaktadır. Bu çalışmanın, Anatomi öğretmenlerine, öğrenme ortamlarının iyileştirilmesine ve Anatomi eğitiminde etkileşimli dijital teknolojilerin kullanılmasına katkı sağlaması beklenmektedir. Bu çalışma ile Anatomi öğretmenlerinin, 3D dijital Anatomi materyalleri ve dijital Anatomi kaynaklarını dijital teknolojiler kullanarak geliştirmeleri ve bunları ters-yüz sınıf, oyunlaştırma gibi dijital teknolojilere dayalı öğrenme stratejileri ile entegre ederek zenginleştirilmiş öğrenme ortamları geliştirmelerine ve bu geliştirilen interaktif dijital teknoloji destekli Anatomi eğitimi sağlanan ortamları eğitim sistemimize kazandırmalarına yardımcı olacağı ümit edilmektedir.

Education in the Digital Age: Technological Trends in Anatomy Education

New developments in medicine and health sciences produced high volume knowledge. However, the more knowledge led to narrowing in duration of anatomy education given to students. For this reason, it may be useful for teachers who teach anatomy to use alternative learning strategies and alternative educational tools, including today’s interactive digital technologies, to enhance the effectiveness of anatomy teaching. This research is a literature review study. In order to reveal the current situation and to make it better understandable, the research is based on the review of the literature. In this study, it is observed that use of interactive digital technologies in anatomy education is insufficient and no so widespread. Therefore, the aim of this study is to reveal the significance of interactive digital technologies that can be used in anatomy education. In accordance with this aim, the study mentioned about some important digital technologies and teaching strategies such as flipped classroom model and gamification in anatomy education. Indeed, the development of digital technologies has not only created an impact on electronics, space science, agriculture and medicine, but also on education. Nowadays, students can learn anatomical tissues through 3-dimensional digital cadavers, they can access them and repeat study whenever and wherever they want. These new learning materials in digital age encourage each student to use their time more effectively in accordance with their own learning pace and skill set. It is expected that this study will contribute to the anatomy teachers on improvement of learning environments and using interactive digital technologies in anatomy education.

___

  • Ahmed M, Sherwani Y, Al-Jibury O, Najim M, Rabee R, Ashraf M, (2015). Letter to the Editor, Gamification in medical education. Med Educ Online, 20:29536. DOI: 10.3402/meo.v20.29536
  • Ang ET, Chan JM, Gopal V, Li Shia N, (2018). Gamifying anatomy education. Clin Anat, 31(7):997–1005. DOI: 10.1002/ca.23249
  • Arshed N & Danson M, (2015). “The Literature Review” in O’Gorman K & Maclntosh R. (Ed.). Research methods for business & management, London: Goodfellow.
  • Azer SA & Azer S (2016). 3D Anatomy models and impact on learning: A review of the quality of the literature. Afr J Health Prof Educ 2, 2(2):80–98. Retrieved from http://dx.doi.org/10.1016/j.hpe.2016.05.002 on 16.06.2018.
  • Aziz MA, McKenzie JC, Wilson JS, Cowie RJ, Ayeni SA & Dunn BK, (2002). The human cadaver in the age of biomedical informatics. Anat Rec, 269:20–32.
  • Balogun WG, (2018). Using Electronic Tools and Resources to Meet the Challenges of Anatomy Education in Sub-Saharan Africa. Anat Sci Educ, 0:1–8.
  • Bartholomew S, Furse J, (2015). Successfully integrating robotics into your curriculum. Techniq Connect Educ Careers, 90(7):14–17.
  • Becker HJ, (2000). Findings from the teaching, learning, and computing survey: Is Larry Cuban right? Educ Policy (EPAA), 8(51):1-31.
  • Becker J, Ravitz JL, (2001). Computer use by teachers: Are Cuban's predictions correct? 2001 Annual Meeting of the American Educational Research Association, Seattle. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.6742&rep=rep1&type=pdf. on 10.06.2018.
  • Bers MU, Flannery L, Kazakoff ER, Sullivan A, (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Comput Educ, 72:145–157. Retrieved from https://doi. org/10.1016/j.compedu.2013.10.020 on 16.06.2018.
  • Bliuc AM, Goodyear P, Ellis RA. 2007. Research focus and methodological choices in studies into students’ experiences of blended learning in higher education. Internet High Educ, 10:231– 244.
  • Bozkurt A, Keskin NO, de Waard I, (2016). Research trends in massive open online course (MOOC) theses and dissertations: Surfing the tsunami wave. Open Praxis, 8(3):203–221.
  • Brazina D, Fojtik R, Rombova Z, (2014). 3D visualization in teaching anatomy. Procedia - Social and Behavioral Sciences, 143:367–371.
  • Brenton H, Hernandez J, Bello F, Strutton P, Purkayastha S, Firth T, et al. (2007). Using multimedia and web3D to enhance anatomy teaching. Comput Educ, 49(1):32–53.
  • Brown DG, Petitto KR, (2003). The status of ubiquitous computing. Educase Rev, 38:25–33.
  • Cassady JC, (1998). Student and instructor perceptions of the efficacy of computer-aided lectures in undergraduate university courses. J Educ comput Res, 19:175–189.
  • Chen F, Lui AM & Martinelli SM, (2017). A systematic review of the effectiveness of flipped classrooms in medical education. Med Educ. 2017 Jun;51(6):585-597. Doi: 10.1111/medu.13272.
  • Costa C, (2017). Robotics K-12 and your district: The essence of stem education and the eticket to unlimited possibilities. Leadership, 46(4):32–35.
  • Coxon SV, Dohrman RL, Nadler DR, (2018). Children using robotics for engineering, science, technology, and math (CREST-M): The development and evaluation of an engaging math curriculum. Roeper Review, 40:86–96.
  • Cuban L, (1986). Teachers and machines: The classroom use of technology since 1920. New York: Teachers College Press.
  • Cuban L, (2000). So much high-tech money invested, so little use and change in practice: how come? Paper prepared for the Council of Chief State School Officers' annual Technology Leadership Conference. Washington, D.C. (January). [cited from Becker HJ, (2000).
  • Findings from the teaching, learning, and computing survey: Is Larry Cuban right? Educ Policy (EPAA), 8(51):1-31].
  • Cuban L, (2001). Oversold and underused: Reforming schools through technology, 1980–2000. Cambridge, MA: Harvard University Press.
  • Custer T & Michael K, (2015). The Utilization of the Anatomage Virtual Dissection Table in the Education of Imaging Science Students. J Tomogr Simul, 1(1): 2–5. DOI:10.4172/jts.1000102
  • De Corte E, (1994). Toward the integration of computers in powerful learning environments. In: Vosniadou S, De Corte E, Mandl H. (eds) Technology-Based
  • Learning Environments. NATO ASI Series (Series F: Computer and Systems Sciences), vol 137. Berlin, Heidelberg, Springer.
  • Dede C, (2014). The Role of digital technologies in deeper learning. Jobs for the Future, 1–28.
  • Retrieved from https://jfforg-prod-prime.s3.amazonaws.com/media/documents/The-Roleof-Digital-Technologies -in-Deeper-Learning-120114.pdf on 16.06.2018. Denner J, Werner L, Ortiz E, (2012). Computer games created by middle school girls: Can they be used to measure understanding of computer science concepts? Comput Educ,
  • 58(1):240–249. Retrieved from https://doi.org/10.1016/j.compedu.2011.08.006 on 16.06.2018. Doherty I, Sharma N, Harbutt D, (2015). Contemporary and future eLearning trends in medical education. Med Teach, 37:1–3.
  • Estai M & Bunt S, (2016). Best teaching practices in anatomy education: A critical review. Ann Anat, 208:151–157. DOI: 10.1016/j.aanat.2016.02.010
  • Estevez ME, Lindgren KA, Bergethon PR, (2010). A novel three-dimensional tool for teaching human neuroanatomy. Anat Sci Educ, 3:309–317. Retrieved from https://doi.org/10.1002/ase.186 on 10.06.2018.
  • Evans R, (2016). Infographics on the Brain. Comput Libr, 4–8.
  • Flyn RR, (2002). Computer sciences: Ideas and peoples (Vol.1). New York: The Macmillan Science Library.
  • Foo JL, Martinez-Escobar M, Juhnke B, Cassidy K, Hisley K, Lobe T, Winer E, (2013). Evaluating mental workload of two-dimensional and three-dimensional visualization for anatomical structure localization. J Laparoendosc Adv Surg Tech A, 23:65–70.
  • Fried CB, (2008). In-class laptop use and its effects on student learning. Comput Educ, 50:906–914. Fried MP, Uribe JI, Sadoughi B, (2007). The role of virtual reality in surgical training in otorhinolaryngology. Curr Opin Otolaryngol Head Neck Surg, 15:163–169.
  • Gavali MY, Khismatrao SK, Gavali YV, Patil KB, (2017). Smartphone, the new learning Aid amongst Medical Students. J Clin Diagn Res, 11(5): JC05-JC08.
  • Gray K, Tobin J, (2010). Introducing an online community into a clinical education setting: a pilot study of student and staff engagement and outcomes using blended learning. BMC Med Educ, 10(6):1–9. DOİ: 10.1186/1472-6920-10-6.
  • Green RA, Whitburn LY, (2016). Impact of introduction of blended learning in gross anatomy on student outcomes. Anat Sci Educ, 9:422–430.
  • Grieshaber S, (2010). Beyond a battery hen model?: A computer laboratory, micropolitics and educational change. Brit J Sociology Educ, 31(4):431–447.
  • Groff J, (2013). Retrieved from http://www.oecd.org/education/ceri/TechnologyRich%20Innovative%20 Learning%20Environments%20by%20Jennifer%20Groff.pdf on 16.06.2018.
  • Hamari J, Koivisto J, Sarsa H, (2014). Does gamification work? – A literature review of empirical studies on gamification. 47th Hawaii International Conference on System Sciences. Finland: IEEE, 3025-34. DOI: http://dx.doi.org/10.1109/HICSS.2014.377
  • Hoyek N, Collet C, Di Rienzo F, De Almedia M & Guillot A, (2014). Effectiveness of threedimensional digital animation in teaching human anatomy in an authentic classroom context. Anat Sci Educ, 7:430–437.
  • Jamali SS, Shiratuddin MF, Wong KW & Oskam C, (2015) Utilising mobile-augmented reality for learning human anatomy. Procedia Soc Behav Sci, 197:659–68.
  • Joynes V, Fuller R, (2016). Legitimisation, personalisation and maturation: Using the experiences of a compulsory mobile curriculum to reconceptualise mobile learning. Med Teach, 38:621–627.
  • Kennepohl D, (2001). Using computer simulations to supplement teaching laboratories in chemistry for distance delivery. Int J E-Learning & Distance Educ, 16(2):58–65.
  • Kozma R, Anderson RE, (2002). Qualitative case studies of innovative pedagogical practices using ICT. J Comput Assist Learning, 18, 387–394.
  • Kraushaar JM, Novak DC, (2010). Examining the effects of student multitasking with laptops during the lecture. J Inform Syst Educ, 21:241–251.
  • Lynn VA, Yenser A, Harman R, (2015). Body apps: iPads for undergraduate anatomy and physiology students. Coll Res Libr News, 76:149–152.
  • Ma, Fallavollita P, Seelbach I, von Der Heide AM, Euler E, Waschke J, Navab N, (2016). Personalized augmented reality for anatomy education. Clin Anat, 29:446–453.
  • Mackay BJ, Anderson J & Harding T, (2017). Mobile technology in clinical teaching. J Nurs Educ Pract, 22:1-6.
  • McMenamin PG, Quayle MR, McHenry CR, Adams JW, (2014). The Production of Anatomical Teaching Resources Using Three-Dimensional (3D) Printing Technology. Anat Sci Educ 7:479–486.
  • Moro C, Stromberga Z, Raikos A, Stirling A, (2017). The Effectiveness of virtual and augmentted reality in health sciences and medical anatomy. Anat Sciences Educ, 10(6):549-559. DOI: 10.1002/ase.1696
  • Morton DA, Colbert-Getz JM, (2017). Measuring the impact of the flipped anatomy classroom: The importance of categorizing an assessment by Bloom's taxonomy. Anat Sci Educ, Mar;10(2):170-175. doi: 10.1002/ase.1635.
  • Nicola S, Virag I, Stoicu-Tivadar L, (2017). VR medical gamification for training and education. Stud Health Technol Inform, 236:97-103.
  • O`Flaherty J, Phillips C, (2015). The use of flipped classrooms in higher education: A scoping review. Internet High Educ, 25, 85–95.
  • Oliver M, Trigwell K. 2005. Can ‘blended learning’ be redeemed? E Learn Digit Media, 2:17–26. Ozdamli F, Kocakoyun S, Sahin T, Akdag S, (2016). Statistical reasoning of impact of infographics on education. Procedia Comput Sci, 102:370–377.
  • Ozdamli F, Ozdal H, (2018). Developing an instructional design for the design of infographics and the evaluation of infographic usage in teaching based on teacher and student opinions. Eurasia J Math Sci Technol Educ, 14(4):1197–1219.
  • Ozer MA, Govsa F, Bati AH, (2017). Web-based teaching video packages on anatomical education. Surg Radiol Anat, 39(11):1253–1261. DOI: 10.1007/s00276-017-1889-9.
  • Pickering JD, Henningsohn L, DeRuiter MC, de Jong PGM, Reinders MEJ, (2017). Twelve tips for developing and delivering a massive open online course in medical education. Med Teach, 39(7):691–696. Retrieved from https://doi.org/10.1080/0142159X.2017.1322189 on 12.06.2018.
  • Preim B, Saalfeld P, (2018). A survey of virtual human anatomy education systems. Comput Graph, 71:132–153.
  • Repenning A, (2012). Education programming goes back to school. Commun ACM, 55(5):38– 40. DOİ:10.1145/2160718.2160729
  • Risling T, (2017). Educating the nurses of 2025: Technology trends of the next decade. J Nurs Educ Pract, 22:89–92.
  • Robinson T, Cronin T, Ibrahim H, Jinks M, Molitor T, Newman J, et al. (2013). al. Smartphone use and acceptability among clinical medical students: a questionnaire-based study. J Med Syst, 37(3):9936.
  • Saxena V, Natarajan P, O’Sullivan PS, Jain S, (2008). Effect of the use of instructional anatomy videos on student performance. Anat Sci Educ, 1(4):159–165.
  • Singh A & Min AKK, (2017). Digital lectures for learning gross anatomy: a study of their efficacy. Korean J Med Educ, 29(1):27–32. DOI: 10.3946/kjme.2017.50
  • Sloman, M. (2007). Making sense of blended learning. Ind Commer Train, 39(6), 315e318. Retrieved from http://doi.org/10.1108/00197850710816782 on 16.06.2018.
  • Stepan K, Zeiger J, Hanchuk S, Del Signore A, Shrivastava R, Govindaraj S, Iloreta A, (2017). Immersive virtual reality as a teaching tool for neuroanatomy. Int Forum Allergy Rh, 7(10):1006–1013.
  • Tam MDBS, Hart AR, Williams S, Heylings D, Leinster S, (2009). Is learning anatomy facilitated by computer-aided learning? A review of the literature. Med Teach, 31:e393– e396.
  • Terzis V, Economides AA, (2011). The acceptance and use of computer based assessment. Comput Educ, 56:1032–1044.
  • Thai NTT, de Wever B, Valcke M, (2017). The impact of a flipped classroom design on learning performance in higher education: Looking for the best “blend” of lectures and guiding questions with feedback. Comput Educ, 107:113e126. Retrieved from http://dx.doi.org/10.1016/j.compedu.2017.01.003 on 16.06.2018.
  • Fidalgo-Neto AA, Tornaghi AJC, Meirelles RMS, Berçot FF, Xavier LL, Castro MFA, Alves LA, (2009). The use of computers in Brazilian primary and secondary schools. Comput Educ, 53:677–685.
  • Torregrosa J, Jimenez-Rodriguez MA, Torralba-estelles J, Garzon-Fronis F, Perez-Bermejo M, Fernandez-Ehrling N, (2016). Distance learning ects and flipped classroom in the anatomy learning: comparative study of the use of augmented reality, video and notes. BMC Medical Education, 16:230. DOI 10.1186/s12909-016-0757-3
  • Turney BW, (2007). Anatomy in a modern medical curriculum. Ann R Coll Surg Engl, 89(2):104–107.
  • Ur-Rehman F, Khan SN, Yunus SM, (2012). Students, perception of computer assisted teaching and learning of anatomy in a scenario where cadavers are lacking. Biomed Res, 23(2):215–218.
  • Valanides N & Angeli C, (2008). Professional development for computer-enhanced learning: a case study with science teachers. Res Sci Technol Educ 26(1):3–12.
  • Walk J, Rashid A, Elder L, (2010). Using mobile phones to improve educational outcomes: an analysis of evidence from Asia. IRRODL Int Rev Res Open Dis, 11(1).
  • Warner JH, Lawrence JR, (2006). Anatomical instruction and training for professionalism from the 19th to the 21st centuries. Clin Anat 19:403–414.
  • Warschauer M, Cotten SR, & Ames MG, (2011). One laptop per child Birmingham: case study of a radical experiment. Int J Learn Media, 3(2), 61–76.
  • Wenting SZ, Samin MM, Sanjay S, Neelam K, Shibli K, Chang S, Cheng J, (2017). A comparison of undergraduate clinical ophthalmology learning methods: smart phone television display versus slit-lamp teaching telescope. Can J Ophthalmol, 52(4):385–391. Retrieved from https://doi.org/10.1016/j.jcjo.2016.11.032 on 12.06.2018.
  • Wurst C, Smarkola C, Gaffney MA, (2008). Ubiquitous laptop use in higher education: effects on student achievement, student satisfaction, and constructivist measure in honors and traditional classes. Comput Educ, 51:1766–1783.
  • Yilmaz M, Ozcelik S, Yilmazer N, Nekovei R (2013). Design-oriented enhanced robotics curriculum. IEEE T Educ, 56(1):137–144. DOİ:10.1109/TE.2012.2220775
  • Zawacki-Richter O & Latchem C, (2018). Exploring four decades of research in Computers & Education. Comput Educ, 122:136–152.
  • Zyda M (2009). Computer science in the conceptual age. Commun ACM, 52(12):67–72. DOI:10.1145/1610252.1610272