Parkinson Hastalığının Etyopatogenezi

Parkinson hastalığı (PH), bazal ganglionlardan, başta substansia nigra olmak üzere, diğer beyinsapı pigmentli nöronlarını da etkileyen dejeneratif bir süreç olup, tüm parkinsonizm olgularının%80’ini oluşturur. Başlıca klinik belirtileri istirahat tremoru, bradikinezi, rijidite ve postüralrefleks bozukluğudur. Prevalans çalışmaları 65 yaşın üstündeki nüfusun yaklaşık %1’inin buhastalığa tutulduğunu göstermektedir. Türkiye için prevalans 111/100 000 olarak bildirilmiştir.Günümüzde bu hastalığın semptomlarının gelişmesinden sorumlu olan nigral dejenerasyonun nedenibilinmemektedir. Ancak yapılan çalışmalar dikkate alındığında, kalıtsal yatkınlık, çevresel toksinler veyaşlanmanın bu süreçte önemli bir rol oynadığını ve etyopatogenezde multifaktöriyel nedenlerin öneçıktığını görmekteyiz. Son zamanlarda bulunan genetik ve biyokimyasal veriler ışığında genetik ve/veya çevresel nedenlerle hasara uğrayan ubiquitin-proteozom sisteminin İdiopatik Parkinson Hastalığı(İPH)’nın patogenezinden sorumlu ana mekanizma olduğu düşünülmektedir.Biz bu makalede PH’nin etyopatogenezindeki moleküllerin ve süreçlerin toplu halde bir değerlendirmesiniyaptık.

Etiopathogenesis of Parkinson's Disease

Parkinson’s disease (PD) is a degenerative process that affects other brain stem pigmented neurons,primarily from the basal ganglia, primarily the substantia nigra, accounting for 80% of all parkinsonismcases. The main clinical indication is resting tremor, bradykinesia, rigidity and postural refleximpairment. Prevalence studies indicate that approximately 1% of the population over 65 years of ageis being admitted to this disease. The prevalence for Turkey has been reported as 111/100 000.Thecause of nigral degeneration, which is responsible for the development of symptoms of this diseasenowadays, is unknown. However, considering the studies done, we see that hereditary predisposition,environmental toxins and aging play an important role in this process, and multifactorial causes areprevalent in etiopathogenesis. The ubiquitin-proteosome system, which has recently been damaged bygenetic and / or environmental causes in the genetic and biochemical signal light, is thought to bethe main mechanism responsible for the pathogenesis of IPD.In this article, we made a collective assessment of the molecules and processes in the etiopathogenesisof PD.

___

  • 1. de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurology 2006; 5 (6): 525-535. 2. Lill CM. Genetics of Parkinson’s disease. Mol Cell Probes 2016; 30 (6): 386-396. 3. Polymeropoulos MH., Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997; 276:2045-2047. 4. Klein C, Westenberger A. Genetics of Parkinson’s Disease. Cold Spring Harb Perspect Med 2012; 2 (1): 1-15. 5. Ibanez P., Lesage S., Janin S., Lohmann E, Durif F, Deste A, Bonnet AM, Brefel-Courbon C, Heath S, Zelenika D, Agid Y, Dürr A, Brice A; French Parkinson’s Disease Genetics Study Group. Alpha-synuclein gene rearrangements in dominantly inherited parkinsonism: frequency, phenotype, and mechanisms. Arch Neurol 2009; 66: 102-108. 6. Singleton AB, Farrer MJ, Bonifati V. The genetics of Parkinson’s disease: Progress and therapeutic implications. Mov Disord 2013; 28 (1): 14-23. 7. Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simn J, van der Brug M, Lpez de Munain A, Aparicio S, Gil AM, Khan N, Johnson J, Martinez JR, Nicholl D, Carrera IM, Pena AS, de Silva R, Lees A, Martí-Massó JF, Pérez-Tur J, Wood NW, Singleton AB. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 2004; 44: 595-600. 8. Zimprich A, Benet-Pages A, Struhal W, Graf E, Eck S.H, Offman M.N, Haubenberger D, Spielberger S, Schulte EC, Lichtner P, Rossle SC, Klopp N, Wolf E, Seppi K, Pirker W, Presslauer S, Mollenhauer B, Katzenschlager R, Foki T, Hotzy C, Reinthaler E, Harutyunyan A, Kralovics R, Peters A, Zimprich F, Brücke T, Poewe W, Auff E, Trenkwalder C, Rost B, Ransmayr G, Winkelmann J, Meitinger T, Strom TM. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 2011; 89: 168-175. 9. Trinh J, Farrer M. Advances in the genetics of Parkinson disease. Nat Rev Neurol 2013; 9: 445-454. 10. Shulman JM, De Jager PL, Feany MB. Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol 2011; 6: 193-222. 11. Vila M, Przedborski S. Genetic clues to the pathogenesis of Parkinson’s disease. Nature Med 2004; 10: 58-62. 12. Bonifati V, Rohe CF, Breedveld GJ, Fabrizio E, De Mari M, Tassorelli C, Tavella A, Marconi R, Nicholl DJ, Chien HF, Fincati E, Abbruzzese G, Marini P, De Gaetano A, Horstink MW, Maat-Kievit JA, Sampaio C, Antonini A, Stocchi F, Montagna P, Toni V, Guidi M, Dalla Libera A, Tinazzi M, De Pandis F, Fabbrini G, Goldwurm S, de Klein A, Barbosa E, Lopiano L, Martignoni E, Lamberti P, Vanacore N, Meco G, Oostra BA. Italian Parkinson Genetics Network.Early-onset parkinsonism associated with PINK1 mutations: frequency, genotypes, and phenotypes. Neurology 2005; 65: 87-95. 13. Camargos ST, Dornas LO, Momeni P, Lees A, Hardy J, Sinleton A, Cardosu E. Familial Parkinsonism and early onset Parkinson’s disease in a Brazilian movement disorders clinic: Phenotypic characterization and frequency of SNCA, PRKN, PINK1, and LRRK2 mutations. Mov Disord 2009; 24: 662-666. 14. Chu CT. A pivotal role for PINK 1 and autophagy in mitochondrial quality control: implications for Parkinson Disease. Hum Mol Genet 2010; 19: 28-37. 15. Junn E, Taniguchi H, Jeong BS, Zhao X, Ichijo H, Mouradian MM. Interaction of DJ-1 with Daxx inhibits apoptosis signal regulating kinase 1 activity and cell death. Proc Natl Acad Sci 2005; 102: 9691-9696. 16. Malgeri G, Eliezer D. Structural effects of Parkinson’s Disease linked DJ-1 mutations. Protein Sci 2008; 17: 855-868. 17. Pfaff DH, Fleming T, Nawroth P, Teleman AA. Evidence Against a Role for the Parkinsonism- associated Protein DJ-1 in methylglyoxal detoxification J Bio Chem 2017; 292 (2): 685-690. 18. Bonifati V, Rizzu P., van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Don-gen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003; 299: 256-259. 19. Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire S, Cid LP, Goebel J, Mubaidin AP, Wriekat AL, Roeper J, Al-Din A, Hillmer AM, Karsak M, Liss B, Woods CG, Behrens MI, Kubisch C. Hereditary Parkinsonism With Dementia Is Caused By Mutations In ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 2006; 61: 1898-1904. 20. Paisan-Ruiz C, Bhatia KP, Li A, Hernandez D, Davis M, Wood NW, Hardy J, Houlden H, Singleton A, Schneider SA. Characterization of PLA2G6 as a Locus for Dystonia-Parkinsonism. Ann Neurol 2009; 65: 19-23. 21. Shojaee S, Sina F, Banihosseini SS, Kazemi MH, Kalhor R, Shahidi GA, Fakhrai-Rad H, Ronaghi M, Elahi E. Genome-wide linkage analysis of a Parkinsonian-pyramidal syndrome pedigree by 500 K SNP arrays. Am J Hum Genet 2008; 82: 1375-1384. 22. Kieburtz K, Wunderle KB. Parkinson’s disease: evidence for environmental risk factors. Mov Disord 2013; 28: 8-13. 23. Goldman SM. Environmental toxins and Parkinson’s diease. An Rev Pharmacol Toxicol 2014; 54: 141-164. 24. Gatto NM, Rhodes SL, Manthipragada AD, Bronstein J, Cockburn M, Farrer M, Ritz B. α-synuclein gene may interact with environmental factors in increasing risk of Parkinson’s Disease. Neuroepidemiol 2010; 35: 191-195. 25. Chin-Chan M, Navarro-Yepes J, Quintanilla- Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson disease. Front Cell Neurosci 2015; 9: 1-22. 26. Coon S, Stark A, Peterson E, Gloi A, Kortsha G, Pounds J. vd. Whole-body lifetime occupational lead exposure and risk of Parkinson’s disease. Environ Health Pers 2006; 114; 1872-1876. 27. Harischandra DS, Jin H, Ananthram V, Kanthasamy A, Kanthasamy AG. Α-synuclein protects against manganese neurotoxic insult during the early stages of exposure in a dopaminergic cell model of Parkinson’s disease. Toxicol Sci 2015; 143: 454-468. 28. Wypijewska A, Galazka-Friedman J, Bauminger ER, Wszolek ZK, Schweitzer KJ, Dickson DW, Jaklewicz A, Elbaum D, Friedman A. Iron and reactive oxygen species activity in parkinsonian substantia nigra. Park Rel Disord 2010; 16: 329-333. 29. Li WJ, Jiang H, Song N, Xie JX. Dose- and time- dependent alpha-synuclein aggregation induced by ferric iron in SK-N-SH cells. Neurosci Bull 2010; 26: 205-210. 30. Noyce A, Bestwick JP, Silveira-Moriyama L, Hawkes CH, Giovannoni G, Lees AJ, Schrag A. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. An Neurol 2012; 72: 893-901. 31. Tanner CM, Goldman SM, Aston DA, Ottman R, Ellenberg J, Mayeux R, Langston JW. Smoking and Parkison’s disease in twins. Neurol 2002; 58: 581-588. 32. Carr L, Rowell P. Attenuation of 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity by tobacco smoke. Neuropharmacology 1990; 29: 311-314. 33. Lev N, Barhum Y, Pilosof PS, Ickowicz D, Cohen HY, Melamed E, Offen, D. DJ-1 protects against dopamine toxicity: implications for Parkinson’s disease and aging. Journals of Gerontology: Biological Science 2012; 68 (3): 215–225. 34. Hipkiss AR. Aging risk factors and Parkinson’s disease: Contrasting roles of common dietary constituents. Neurobiol Aging 2014; 35 (6): 1469-1472. 35. Glaab E, Schneider R. Comparative pathway and network analysis of brain transcriptome changes during adult aging and in Parkinson’s disease. Neurobiology of Disease 2014; 74 (2015): 1-13. 36. Rodriguez M, Rodriguez-Sabate C, Morales I, Sabate M. Parkinson’s disease as a result of aging. Aging Cell 2015; 14 (3): 293-308. 37. Wood-Kaczmar A, Gandhi S, Wood NW. Understanding the molecular causes of Parkinson’s disease. Trends Mol Med 2006; 12 (11): 521-528. 38. Reeve A, Simcox E, Turnbull D. Ageing and Parkinson’s disease: Why is advancing age the biggest risk factor?. Ageing Res Rev 2014; 14: 19-30. 39. Ma SY, Roytt M, Collan Y, Rinne JO. Unbiased morphometrical measurements show loss of pigmented nigral neurones with ageing. Neuropathology and Applied Neurobiology 1999; 25: 394-399. 40. Moon HE, Paek SH. Mitochondrial dysfunction in Parkinson’s disease. Experimental Neurobiology 2015; 24 (2): 103-116. 41. Wang B, Abraham N, Gao G, Yang Q. Dysregulation of autophagy and mitochondrial function in Parkinson’s disease. Transl Neurodegener 2016; 5(1), 19. 42. Hu Q, Wang G. Mitochondrial dysfunction in Parkinson’s disease. Transl Neurodegener 2016; 5 (1): 14. 43. Dolle C, Flønes I, Nido G S, Miletic H, Osuagwu N, Kristoffersen S, Lilleng PK, Larsen J,- Tysnes OB, Haugarvoll K, Bindoff LA. Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease. Nat Commun 2016; 7: 13548. 44. Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983; 219 (4587): 979–980. 45. Kolata G. Monkey model of Parkinson’s disease. Science 1983; 220 (4598): 705-705. 46. Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson HS, Betts J, Klopstock T, Taylor RW, Turnbull DM. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 2006; 38 (5): 515-517. 47. Exner N, Lutz AK, Haass C, Winklhofer KF. Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. The EMBO Journal 2012; 31(14): 3038-3062. 48. Abou-Sleiman PM, Muqit MM, Wood NW. Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 2006; 7(3): 207-219. 49. Rangaraju V, Calloway N, Ryan TA. Activity- driven local ATP synthesis is required for synaptic function. Cell 2014; 156 (4): 825- 835. 50. Dickson DW. Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harbor perspectives in medicine doi: 10.1101/cshperspect. a009258, Aug 1, 2012. 51. Burchell VS, Nelson DE, Sanchez-Martinez A, Delgado-Camprubi M, Ivatt RM, Pogson J H, Randle SJ, Wray S, Lewis PA, Houlden H. The Parkinson’s disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nat Neurosci 2013; 16(9): 1257-1265. 52. Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 2013; 3 (4): 461-491. 53. Haytural H, Tüzün E. Parkinson hastalığı’nın hayvan modelinde PI3K/Akt yolağı ile mitokondriyal, oksidatif ve apoptotik parametrelerin ilişkisi. Deneysel Tıp Araştırma Enstitüsü Dergisi 2013; 3 (7): 28-37. 54. Semchuk KM, Love EJ, Lee RG. Parkinson’s disease: a test of the multifactorial etiologic hypothesis. Neurology 1993; 43: 1173-1180. 55. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. Oxford University Press. Oxford, UK; 4th ed. 2007; pp 440-613. 56. Adam-Vizi V, Chinopoulos C. Bioenergetics and The Formation of Mitochondrial Reactive Oxygen Species. Trends Pharmacol Sci 2006; 12: 639-645. 57. Brannock C, Cadet JL. Invited review Free radicals and the pathobiology of brain dopamine systems. Neurochemistry 1998; 32 (2): 117-131. 58. Berk M, Kapczinski F, Andreazzae AC, Deana OM, Giorlando F. Pathways underlying neuroprogression in bipolar disorder: Focus on inflammation oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 2011; 3: 804-817. 59. Gürer R. İdiyopatik Parkinson Hastalığı Etyopatogenezinde Seruloplazminin Yeri ve Proton MR Spektroskopi ile Verifikasyonu. Uzmanlık Tezi, İstanbul 2005. 60. Steckert AV, Valvassori SS, Moretti M, Dal-Pizzol F, Quevedo J. The role of oxidative stres in the pathophysiology of bipolar disorder. Neurochem Res 2010; 35 (9): 1295-1301. 61. Youdim MB, Riederer P. Understanding Parkinson’s disease. Sci Am 1997; 276 (1): 38-45. 62. Varcin M, Bentea E, Michotte Y, Sarre S. Oxidative stress in genetic mouse models of Parkinson’s disease. Oxid Med Cel Longev, doi: 10.1155/2012/624925., Jul 8, 2012. 63. Blesa J, Trigo-Damas I, Quriga-Varela A, Jackson-Lewis VR. Oxidative stress and Parkinson’s disease. Front Neuroanat doi: 10.3389/fnana.2015.00091, Jul 8, 2015. 64. Zhao J, Yu S, Zheng Y, Yang H, Zhang J. Oxidative Mmodification and Its Implications for the neurodegeneration of Parkinson’s disease. Mol Neurobiol 2017; 54 (2): 1404-1418. 65. Zheng Q, Huang T, Zhang L, Zhou Y, Luo H, Xu H, Wang X. Dysregulation of Ubiquitin- Proteasome System in Neurodegenerative Diseases. Frontiers in Aging Neuroscience doi: 10.3389/fnagi.2016.00303, December 15, 2016. 66. Nakamura T, Lipton SA. Cell death: protein misfolding and neurodegenerative diseases. Apoptosis 2009; 4; (14): 455-468. 67. Reiser E, Cordier SM, Walczak H. Linear Ubiquitination: a newly discovered regulator of cell signalling. Trends Biochem Sci 2013; 38: 94-102. 68. Eriksen JL, Wszolek Z, Petrucelli L. Molecular pathogenesis of Parkinson disease. Arch Neurol 2005; 62 (3): 353-357. 69. Kuzuhara S, Mori H, Izumiyama N, Yoshimura M, Ihara Y. Lewy bodies are ubiquitinated. A light and electron microscopic immunocytochemical study. Acta Neuropathol 1988; 75: 345–353. 70. McNaught KS, Jenner P. Proteosomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci Lett 2001; 297: 191- 194. 71. Xiong H, Wang D, Chen L, Choo YS, Ma H, Tang C, Xia K, Jiang W, Ronai Z, Zhuang X, Zhang Z. Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Invest 2009; 3 (119): 650-660. 72. Zucchelli S, Codrich M, Marcuzzi F, Pinto M, Vilotti S, Biagioli M, Ferrer I, Gustincich S. TRAF6 promotes a typical ubiquitination of mutant DJ-1 and alpha- synuclein an dislocalized to Lewy bodies in sporadic Parkinson’sdisease brains. Hum Mol Genet 2010; 19: 3759-3770. 73. Nagatsu T, Sawada M. Inflammatory process in Parkinson’s disease: Role for cytokines. Curr Pharm Des 2005; 11: 999-1016. 74. Hirsch EC, Hunot S. Neuroinflammation in Parkison’s disease: a target for neuroprotection? Lanc Neurol 2009; 8: 382-397. 75. Nelson PT, Soma A, Lavi E. Microglia in diseases of the central nervous system. Ann Medic 2002; 34: 491-500. 76. Qian L, Flood PM. Microglial cells and Parkin-son’s disease. Immunol Res 2008; 41: 155-164. 77. Liu B, Hong JS. Role of microglia in inflammation- mediated neurodegenerative disease: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 2003; 304: 1-7. 78. Cicchetti F, Brownell AL, Williams K. vd. Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Euro J Neurosci 2002; 15: 991-998. 79. Kurkowska-Jastrzebska I, Litwin T, Joniec I, Ciesielska A, Przybyłkowski A, Członkowski A, Członkowska A. Dexamethasone protects against dopaminergic neurons damage in a mouse model of Parkison’s disease. Inter Immunopharmacol 2004; 4: 1307-1318. 80. Kim C, Ho DH, Suk JE, You S, Michael S, Kang J, Joong Lee S, Masliah E, Hwang D, Lee HJ, Lee SJ. Neuron-released oligomeric α-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Communic 2013; 4: 1562. 81. Austin SA, Floden AM, Murphy EJ, Combs CK. Alpha-synuclein expression modulates microglial activation phenotype. J Neurosci 2006; 26: 10558-10563. 82. Kim B, Yang MS, Choi D, Kim JH, Kim HS, Seol W, Choi S, Jou I, Kim EY, Joe EH. Impaired inflammatory responses in murine Lrrk2-knockdown brain microglia. PLoS One doi: 10.1371/journal.pone.0034693, April 9, 2012. 83. Trudler D, Weinreb O, Mandel SA, Youdim MB, Frenkel D. DJ-1 deficiency triggers microglia sensitivity to dopamine toward a pro-inflammatory phenotype that is attenuated by rasagiline. J Neurochem 2014; 129 (3): 434-447. 84. Kim YS, Choi DH, Block ML, Lorenzl S, Yang L, Kim YJ, Sugama S, Cho BP, Hwang O, Browne SE, Kim SY, Hong JS, Beal MF, Joh TH. A piv-otal role of matrix metalloproteinase-3 activi-ty in dopaminergic neuronal degeneration via microglial activation. The Faseb J 2007; 25: 3701-3711. 85. Lorenzl S, Calingasan N, Yang L, Albers DS, Shugama S, Gregorio J, Krell HW, Chirichigno J, Joh T, Beal MF. Matrix metalloproteinase-9 is elevated in 1-methyl-4-phenyl-1,2,3,6-tetrahyproyridine- induced parkinsonism in mice. Neuromol Medic 2004; 5: 119-132. 86. Sita G, Hrelia P, Tarozzi A, Morroni F. Isothiocyanates Are Promising Compounds against Oxidative Stress, Neuroinflammation and Cell Death that May Benefit Neurodegeneration in Parkinson’s Disease. Int J Mol Sci doi: 10.3390/ijms17091454, Sep 1, 2016. 87. Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 2013; 698: 6-18. 88. Dong XX, Wang Y, Qin ZH. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 2009; 30: 379-387. 89. Abramov AY and Duchen MR. Mechanisms underlying the loss of mitochondrial membrane potential in glutamate excitotoxicity. Biochimica et Biophysica Acta 2008; 1777 (7- 8): 953-964. 90. Van Laar VS, Roy N, Liu A, Rajprohat S, Arnold B, Dukes AA, Holbein CD, Berman SB. Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy. Neurobiol Dis 2015; 74: 180-193. 91. Pawlak CR, Chen FS, Wu FY, Ho YJ. Potential of D-cycloserine in the treatment of behavioral and neuroinflammatory disorders in Parkinson’s disease and studies that need to be performed before clinical trials. Kaohsiung J Med Sci 2012; 28 (8): 407-17. 92. Rivero Vaccari JC, Corriveau RA, Belousov AB. Gap junctions are required for NMDA receptordependent cell death in developing neurons. J Neurophysiol 2007; 98: 2878–2886. 93. Vaarmann A, Kovac S, Holmström KM, Gandhi S, Abramov AY. Dopamine protects neurons against glutamate-induced excitotoxicity. Cell Death Dis doi:10.1038/cddis. 2012. 194, Jan 10, 2013. 94. Yu W, Sun Y, Guo S, Lu B. The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons. Hum Mol Genet 2011; 20: 3227-3240. 95. Van Laar VS, Roy N, Liu A, Rajprohat S, Arnold B, Dukes AA, Holbein CD, Berman SB. Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy. Neurobiol Dis 2015; 74: 180-193. 96. Hoekstra JG, Cook TJ, Stewart T, Mattison H, Dreisbach MT, Hoffer ZS, Zhang J. Astrocytic dynamin-like protein 1 regulates neuronal protection against excitotoxicity in Parkinson disease. Am J Pathol 2015; 185 (2): 536-49. 97. Sian-Hülsman J, Mandel S, Youdim MBH, Riederer P. The relevance of iron in the patho-genesis of Parkinson’s disease. J Neurochem 2011; 118, 939-957. 98. Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M, Giaveri G, Arosio P, Santambrogio P. Fariello RG, Karatekin E, Kleinman MH, Turro N, Hornykiewicz O, Zucca FA. The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci USA 2004; 101: 9843-9848. 99. Ramos P, Santos A, Pinto NR, Mendes R, Magalhães T, Almeida A. Iron levels in the human brain: a post-mortem study of anatomical region differences and age-related changes. J Trace Elem Med Biol 2014; 28: 13-17. 100. Dexter DT, Sian J, Jenner P, Marsden CD. Implications of alterations in trace element levels in brain in Parkinson’s disease and other neurological disorders affecting the basal ganglia. Adv Neurol 1993; 60: 273-281. 101. Kortekaas R, Leenders KL, van Oostrom JC, Vaalburg W, Bart J, Willemsen AT, Hendrikse NH. Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 2005; 57: 176-179. 102. Gao HM, Hong JS. Why neurodegenerative diseases are progressive: Uncontrolled inflammation drives disease progression. Trends Immunol 2008; 29: 357-365. 103. Faucheux BA, Nillesse N, Damier P, Spik G, Mouatt-Prigent A, Pierce A, Leveugle B, Kubis N, Hauw JJ, Agid Y. Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease. Proceedings of the National Academy of Sciences 1995; 92: 9603-9607. 104. Salazar J, Mena N, Hunot S, Prigent A, Alvarez- Fischer D, Arredondo M, Duyckaerts C, Sazdovitch V, Zhao L, Garrick LM, Nuez MT, Garrick MD, Raisman-Vozari R, Hirsch EC. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci USA 2008; 105: 8578-18583. 105. Mastroberardino PG, Hoffman EK, Horowitz MP, Betarbet R, Taylor G, Cheng D, Na HM, Gutekunst CA, Gearing M, Trojanowski JQ, Anderson M, Chu CT, Peng J, Greenamyre JT. A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson’s disease. Neurobiol Dis 2009; 34: 417-431. 106. Borie C, Gasparini F, Verpillat P, Bonnet AM, Agid Y, Hetet G, Brice A, Dürr A, Grandchamp B. Association study between iron-related genes polymorphisms and Parkinson’s disease. J Neurol 2002; 249: 801- 804. 107. Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, Sarna T. Casella L, Zecca L. Interactions of iron, dopamine and neuromelanin pathways in brain aging and parkinson’s disease. Prog Neuro-biol 2015; 155: 96-119. 108. Urrutia P, Aguirre P, Esparza A, Tapia V, Mena NP, Arredondo M, González-Billault C. Núñez MT. Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem 2013; 126: 541-549. 109. Andersen HH, Johnsen KB, Moos T. Iron deposits in the chronically inflamed central nervous system and contributes to neurodegeneration. Cell Mol Life Sci 2014; 71: 1607-1622. 110. Schiesling C, Kieper N, Seidel K, Krüger R. Review: familial Parkinson’s disease – genetics, clinical phenotype and neuropathology in relation to the common sporadic form of the disease. Neuropathol Appl Neurobiol 2008; 34: 255-271. 111. Kruger R, Kuhn W, Muller T, Woltalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Rless O. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson diesase. Nat Gene 1998; 18: 106-108. 112. Klein C, Lohmann-Hedrick K, Rogaeva E, Schlossmacher MG, Lang AE. Deciphering the role of heterozygous mutations in genes associated with parkinsonism. Lanc Neurol 2007; 6: 652-662. 113. Lucking CB, Durr A, Bonifati V, Vaughan J, De Michele G, Gasser T, Harhangi BS, Meco G, Denèfle P, Wood NW, Agid Y, Brice A; French Parkinson’s Disease Genetics Study Group; European Consortium on Genetic Susceptibility in Parkinson’s Disease. Assocation between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Medic 2000; 342: 1560-1567. 114. İmai Y, Soda M, Inoue N, Hattori Y, Mizuno R, Takahashi R. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Park Cell 2001; 105: 891-902. 115. Leroy E, Boyer R, Plymeropoulos MH. Intron- exon structure of ubiquitin c-terminal hydrıolase-L1. DNA Res 1998; 5: 397-400. 116. Van Dujin CM, Dekker MC, Bonifati V, Galjaard RJ, Houwing-Duistermaat JJ, Snijders PJ, Testers L, Breedveld GJ, Horstink M, Sandkuijl LA, van Swieten JC, Oostra BA, Heutink P. PARK7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome. Am J Hum Genet 2001; 69: 629-634. 117. Chartier-Harlin MC, Dachsel JC, Vilariño- Güell C, Lincoln SJ, Leprêtre F, Hulihan MM, Kachergus J, Milnerwood AJ, Tapia L, Song MS, Le Rhun E, Mutez E, Larvor L, Duflot A, Vanbesien-Mailliot C, Kreisler A, Ross OA, Nishioka K, Soto-Ortolaza AI, Cobb SA, Melrose HL, Behrouz B, Keeling BH, Bacon JA, Hentati E, Williams L, Yanagiya A, Sonenberg N, Lockhart PJ, Zubair AC, Uitti RJ, Aasly JO, Krygowska-Wajs A, Opala G, Wszolek ZK, Frigerio R, Maraganore DM, Gosal D, Lynch T, Hutchinson M, Bentivoglio AR, Valente EM, Nichols WC, Pankratz N, Foroud T, Gibson RA, Hentati F, Dickson DW, Destée A, Farrer MJ. Translation initiator EIF4G1 mutations in familial Parkinson disease, Am J Hum Genet 2011;89 (3): 398-406. 118. Mencacci NE, Isaias IU, Reich MM, Ganos C, Plagnol V, Polke JM, Bras J, Hersheson J, Stamelou M, Pittman AM, Noyce AJ, Mok KY, Opladen T, Kunstmann E, Hodecker S, Münchau A, Volkmann J, Samnick S, Sidle K, Nanji T, Sweeney MG, Houlden H, Batla AZecchinelli AL, Pezzoli G, Marotta G, Lees A, Alegria P, Krack P, Cormier-Dequaire F, Lesage S, Brice A, Heutink P, Gasser T, Lubbe SJ, Morris HR, Taba P, Koks S, Majounie E, Raphael Gibbs J, Singleton A, Hardy J, Klebe S, Bhatia KP, Wood NW; International Parkinson’s Disease Genomics Consortium and UCL-exomes consortium. Parkinson’s disease in GTP cyclohydrolase 1 mutation carriers, Brain 2014; 137 (Pt 9): 2480-2492. 119. Maraganore DM, de Andrade M, Elbaz A, Farrer MJ, Ioannidis JP, Krüger R, Rocca WA, Schneider NK, Lesnick TG, Lincoln SJ, Hulihan MM, Aasly JO, Ashizawa T, Chartier- Harlin MC, Checkoway H, Ferrarese C, Hadjigeorgiou G, Hattori N, Kawakami H, Lambert JC, Lynch T, Mellick GD, Papapetropoulos S, Parsian A, Quattrone A, Riess O, Tan EK, Van Broeckhoven C; Genetic Epidemiology of Parkinson’s Disease (GEO-PD) Consortium. Collaborative analysis of alpha-synuclein gene promotervariability and Parkinson disease, Jama 2006; 296 (6): 661-670. 120. Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, DeStefano AL, Kara E, Bras J, Sharma M, Schulte C, Keller MF, Arepalli S, Letson C, Edsall C, Stefansson H, Liu X, Pliner H, Lee JH, Cheng R; International Parkinson’s Disease Genomics Consortium (IPDGC); Parkinson’s Study Group (PSG) Parkinson’s Research: The Organized GENetics Initiative (PROGENI); 23andMe; GenePD; NeuroGenetics Research Consortium (NGRC); Hussman Institute of Human Genomics (HIHG); Ashkenazi Jewish Dataset Investigator; Cohorts for Health and Aging Research in Genetic Epidemiology (CHARGE); North American Brain Expression Consortium (NABEC); United Kingdom Brain Expression Consortium (UKBEC); Greek Parkinson’s Disease Consortium; Alzheimer Genetic Analysis Group, Ikram MA, Ioannidis JP, Hadjigeorgiou GM, Bis JC, Martinez M, Perlmutter JS, Goate A, Marder K, Fiske B, Sutherland M, Xiromerisiou G, Myers RH, Clark LN, Stefansson K, Hardy JA, Heutink P, Chen H, Wood NW, Houlden H, Payami H, Brice A, Scott WK, Gasser T, Bertram L, Eriksson N, Foroud T, Singleton AB. Largescale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 2014;46 (9): 989-993. 121. Stefansson H, Helgason A, Thorleifsson G, Steinthorsdottir V, Masson G, Barnard J, Baker A, Jonasdottir A, Ingason A, Gudnadottir VG, Desnica N, Hicks A, Gylfason A, Gudbjartsson DF, Jonsdottir GM, Sainz J, Agnarsson K, Birgisdottir B, Ghosh S, Olafsdottir A, Cazier JB, Kristjansson K, Frigge ML, Thorgeirsson TE, Gulcher JR, Kong A, Stefansson K. A common inversion under selection in Europeans. Nat Genet 2005; 37 (2): 129–137. 122. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JB, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P. Association of missense and 50-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 1998: 393 (6686): 702-705. 123. Eblan MJ, Scholz S, Stubblefield B, Gutti U, Goker-Alpan O, Hruska KS, Singleton AB, Sidransky E. Glucocerebrosidase mutations are not found in association with LRRK2 G2019S in subjects with parkinsonism. Neurosci Lett 2006; 404 (1-2): 163-165. 124. Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, DeStefano AL, Kara E, Bras J, Sharma M, Schulte C, Keller MF, Arepalli S, Letson C, Edsall C, Stefansson H, Liu X, Pliner H, Lee JH, Cheng R, International Parkinson’s Disease Genomics Consortium (IPDGC).; Parkinson’s Study Group (PSG) Parkinson’s Research: The Organized GENetics Initiative (PROGENI).; 23andMe.; GenePD.; NeuroGenetics Research Consortium (NGRC).; Hussman Institute of Human Genomics (HIHG).; Ashkenazi Jewish Dataset Investigator.; Cohorts for Health and Aging Research in Genetic Epidemiology (CHARGE).; North American Brain Expression Consortium (NABEC).; United Kingdom Brain Expression Consortium (UKBEC).; Greek Parkinson’s Disease Consortium.; Alzheimer Genetic Analysis Group., Ikram MA, Ioannidis JP, Hadjigeorgiou GM, Bis JC, Martinez M, Perlmutter JS, Goate A, Marder K, Fiske B, Sutherland M, Xiromerisiou G, Myers RH, Clark LN, Stefansson K, Hardy JA, Heutink P, Chen H, Wood NW, Houlden H, Payami H, Brice A, Scott WK, Gasser T, Bertram L, Eriksson N, Foroud T, Singleton AB. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 2014; 46 (9): 989-993. 125. Wang Q, Zhou Q, Zhang S, Shao W, Yin Y, Li Y, Hou J, Zhang X, Guo Y, Wang X, Gu X, Zhou J. Elevated Hapln2 Expression Contributes to Protein Aggregation and Neurodegeneration in an Animal Model of Parkinson’s Disease. Front Aging Neurosci doi: 10.3389/ fnagi.2016.00197, Aug 23, 2016