Nörodejeneratif Hastalıklara DNA Onarım Mekanizmalarının Rolü

DNA stabil yapıda olmasına rağmen, endojen ve ekzojen kaynaklı ajanlar tarafından hasara uğramaolasılığı yüksek bir moleküldür. Eğer oluşan DNA hasarı onarılmazsa; hücrede apoptoz, yaşlanma gibiolumsuz durumlar oluşur ve DNA’da genomik mutasyonlar meydana gelebilir. Bu yüzden organizmalarkendilerine uygun birtakım DNA onarım mekanizmaları geliştirmiştir. Bu onarım mekanizmaları canlılığınbütünlüğü ve devamlılığı için oldukça önemlidir.DNA hasarları, nörodejeneratif hastalıkların patogenezinde rol alır. Nöronlarda postmitotik hücrelerolması nedeni ile daha çok baz kaybı mutasyonları ve DNA zincir kırıkları mutasyonları görülürken;mevcut oksijenin %20’sini kullanan beyinde ise oksidatif strese dayalı DNA hasarları oluşur. Ayrıcanörodejeneratif hastalığın varlığı DNA onarım mekanizmalarının işleyişini değiştirir.Bu derlemede DNA onarım mekanizmaları gözden geçirilecek ve Huntington Hastalığı, AlzheimerHastalığı, Parkinson Hastalığı, Amytrofik Lateral Skleroz Hastalığı, Friedreich Ataksisi, Ataksi Telanjiektazi,Herediter Spastik Parapleji Hastalıklarında DNA onarım mekanizmalarının rolünden bahsedilecektir.

THE ROLE OF DNA REPAIR MECHANISMS IN NEURODEGENERATIVE DISEASES

Although DNA is stable, it is a molecule likely to be damaged by endogenous and exogenous sources.If the resulting DNA damage is not repaired; adverse events may occur in the cell such as apoptosisand aging, and genomic mutations in DNA. Therefore, organisms have developed a number ofDNA repair mechanisms that are appropriate for them. These repair mechanisms are very importantfor the integrity and continuity of life.DNA damage plays a role in the pathogenesis of neurodegenerative diseases. As neurons are postmitoticcells, mutations in base loss mutations and DNA chain breaks are more common, whereas thebrain uses 20% of the available oxygen, DNA damage occurs due to oxidative stress. Also thepresence of neurodegenerative disease changes the functioning of DNA repair mechanisms.This review will discuss DNA repair mechanisms and the role of DNA repair mechanisms in Huntington’sdisease, Alzheimer’s disease, Parkinson’s disease, Amytrophic Lateral Sclerosis, Friedreich’sAtaxia, Ataxia Telangiectasia and Hereditary Spastic Paraplegia.

___

  • 1. Berg JM, Tymoczko, JL, Stryer L. DNA polymerases require a template and primer. In Biochemistry (5th ed., section 27.2.4). New York, NY: W. H. Freeman, 2002. 2. Evans MD, Dizdaroglu M, Cooke MS. Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 2004; 567, 1-61. 3. Lindahl T. Instability and decay of the primary structure of DNA. Nature 1993; 362, 709-715. 4. Jeppesen DK, Bohr VA, Stevnsner T. DNA repair deficiency in neurodegeneration. Progress in Neurobiology 2011; 94: 166-200. 5. Hoeijmakers, JH. Genome maintenance mechanisms for preventing cancer. Nature 2001; 411: 366-374. 6. Krokan, HE, Nilsen H., Skorpen F, Otterlei M, Slupphaug G. Base excision repair of DNA in mammalian cells. FEBS Lett 2000; 476, 73-77. 7. Mathews LA et al. (eds.), DNA Repair of Cancer Stem Cells, DOI 10.1007/978-94-007- 4590-2_2, Springer Science+Business Media Dordrecht 2013. 8. Cleaver JE, Lam ET, Revet I. Disorders of nucleotide excision repair: the genetic andmolecular basis of heterogeneity. Nat Rev Genet 2009; 10(11):756-768. 9. Vermeulen W, de Boer J, Citterio E et al. Mammalian nucleotide excision repair and syndromes. Biochem Soc Trans 1997; 25(1): 309-315. 10. van Gent DC, Hoeijmakers JH, Kanaar R. Chromosomal stability and the DNA doublestranded break connection. Nat Rev Genet 2001; 2(3): 196-206. 11. Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 2001; 27(3): 247-254. 12. Orii, KE, Lee Y, Kondo N, McKinnon PJ. Selective utilization of nonhomologous end-joining and homologous recombination DNA repair pathways during nervous system development. Proc Natl Acad Sci USA 2006; 103, 10017-10022. 13. Iyama T, Wilson DM. DNA repair mechanisms in dividing and non-dividing cells. DNA Repair 2013; 12(8): 620-636. 14. Hsieh P, Yamane K. DNA mismatch repair: molecular mechanism, cancer, and ageing. Mech Ageing Dev 2008; 129, 391-407. 15. Li GM. Mechanisms and functions of DNA mismatch repair. Cell Res 2008; 18, 85-98. 16. Schlacher K, Goodman MF. Lessons from 50 years of SOS DNA-damage-induced mutagenesis. Nature Rev Mol Cell Biol 2007; 8, 587-594. 17. Klug WS, Cumming MR, Spencer CA. Genetik Kavramlar, Ankara 2011: 377-382. 18. Kurtoğlu EL, Tekedereli İ. DNA onarım mekanizmaları. Balıkesir Sağlık Bilimleri Dergisi 2015; 4(3): 169-177. 19. Friwdberg EC, DNA Repair and Mutagenesis. 1995, ASM pr. Washington, DC, A short review on the implications of base excision repair pathway for neurons: relevance to neurodegenerative diseases. 20. Mantha AK, Sarkar B, Tell G. Mitochondrion. 2014 May;16:38-49. doi: 10.1016 / j.mito. 2013.10.007. Epub 2013 Nov 9. 21. Ayala-Pea S. Role of oxidative dna damage in mitochondrial dysfunction and Huntington’s disease pathogenesis. Free Radic Biol Med 2013; 62: 102-110. 22. Huntington’s; Disease; Collaborative; Research; Group. A novel gene containing a trinucleotide repeat that is unstable on Hntington’s Disease chromosomes. Cell 1993; 72: 971-983. 23. ÖzkayÜ DÖ, ztürkY , Can ÖDY. aşlanan dünyanın hastalığı: Alzheimer Hastalığı. SDÜ Tıp Fak Der 2011; 18: 35-42. 24. Leandro GS, Sykora P, Bohr VA. The Impact of Base Excision DNA Repair in Age- Related Neurodegenerative Diseases. Mutation Research/ Fundamental and Molecular Mechanisms of Mutagenesis 2015; 776: 31-39. 25. Youle R. J., Narendra D. P., Mechanisms of mitophagy. Nature Reviews Molecular Cell Biology 2011; 12: 9-14. 26. Sepe S, Milanese C, Gabriels S, Blandini F, Hoeijmakers JHJ, Mastroberardino PG. Inefficient DNA Repair Is an Aging-Related Modifier of Parkinson’s Disease. Cell Reports 2016; 15: 1-10. 27. Özmen ÜS, Özarda Y. Amyotrofik Lateral Skleroz Hastalığında Biyobelirteçler Türk Klinik Biyokimya Derg 2014; 12(3): 137-146. 28. Fırıncıoğulları M, Yavuz B, Koç F. ÖnB oynuz Tutulumuyla Giden Hastalıklar. Arşiv Kaynak Tarama Dergisi 2016; 25(4): 269-303. 29. Shang Y, Huang EJ. Mechanisms of FUS mutations in familial amyotrophic lateral sclerosis. Brain Research 2016; 1647: 65-78. 30. Giudice TL, Lombardi F, Santorelli FM, Kawarai T, Orlacchio A. Hereditary spastic paraplegia: Clinical-genetic characteristics and evolving molecular mechanisms. Experimental Neurology, 2014; 261: 518539. 31. Özeş B, Battaloğlu E. Herediter spastik paraparezi: genetikten patogeneze. Türkiye Klinikleri Nöroloji Özel Dergisi 2011; 4 (2): 93-102. 32. Uysalol M, Eker N, İncioğlu A, Paslı E. Ataksi Telenjiektazi: Olgu Sunumu. BakırköyTıp Dergisi 2007; 3: 73-77. 33. Fasullo M, Endres L. Nucleotide Salvage Deficiencies, DNA Damage and Neurodegeneration. Int J Mol Sci 2015; 16: 9431-9449. 34. Marinoglou K. the role of the dnA damage response Kinase Ataxia telangiectasia Mutated in neuroprotection. YALE Journal of Biology and Medicine 2012; 85: 469-480. 35.Toprak GÇ, Kaplan A, Göksu H, Kahramanoğlu M, Erhan ÖL. Friedreich Ataksisinde Anestezi. Fırat Tıp Dergisi 2008; 13: 207-209. 36. Thierbach R, Drewes G, Fusser M, Voıgt A, Kuhlow D, Blume U, Schulz T, Reiche C, Glatt H, Epe B, Steinberg P, Pistow M. The Friedreich’s ataxia protein frataxin modulates DNA base excision repair in prokaryotes and mammals. Biochem J 2010; 432: 165-172. 37. Kılıç SŞ. Kseroderma Pigmentozum. Günce l Pediatri 2004; 2: 137-139. 38. Black JO. Xeroderma Pigmentosum. Head and Neck Pathol 2016; 10: 139-144.
Experimed-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2011
  • Yayıncı: İstanbul Üniversitesi