KALBE ÖZGÜ “SUBTRACTIVE” HIBRIDIZASYON CDNA KÜTÜPHANESINDEN ELDE EDILEN MFN2, MT-ATP6, MIDN VE KPNB1 GENLERININ YETIŞKIN, NEONATAL VE EMBRIYONIK DOKULARDAKI EKSPRESYON ANALIZI

  Amaç: Eş zamanlı eksprese olan genlerin belirlenmesinde ve farklılaşmış gen ekspresyonunun tanımlanmasında dokuya özgü moleküler yolakların belirlenmesi önem taşımaktadır. Daha önceki çalışmalarımızda, “subtractive” hibridizasyon cDNA kütüphanesi (SHL) oluşturulmuş ve ardından bu transkriptlerin kalp dokusundaki rollerinin tanımlanabilmesi amacı ile çok sayıda fonksiyonel çalışma yürütülmüştür. Bu çalışmadaki amacımız, SHL’den seçilen dört transkriptin çoklu doku ve farklı evrelerdeki total embriyo dokularındaki ekspresyon özelliklerinin araştırılmasıdır. Gereç ve Yöntem: Toplam 16 farklı yetişkin BALB/c fare dokusu, neonatal kalp ve iskelet kası dokusu ve 5 farklı embriyonik döneme ait dokularda total RNA izolasyonu ve cDNA sentezi gerçekleştirildi. SHL’den elde edilen dört genin, mitofusin-2 (Mfn2), mitokondriyal ATP sentaz 6 (mt-Atp6), midnolin (Midn) ve karyoferin (importin) beta 1 (Kpnb1) genlerinin qRT-PCR yöntemi ile gen ekspresyon analizi yapıldı. Ek olarak, mt-Atp6 geninin ekspresyonu çoklu doku Northern blot analizi ile araştırıldı. Bulgular: Araştırılan dört transkriptin neonatal dönemde iskelet kasına oranla kalp dokusundaki ekspresyon seviyelerinin daha fazla olduğu tespit edildi. Yetişkin kalp ve iskelet dokularında da benzer yapı gözlendi. Diğer yandan, mt-Atp6 ve Mfn2 genlerinin diğer tüm dokular ile karşılaştırıldığında kalp dokusunda daha fazla ekspresyonunun olduğu belirlendi. Sonuç: Farklı dokular ve embriyonik dönemler arasında farklılaşmış gen ekspresyonlarının olması, bu dört transkriptin hücre fizyolojisinde önemli bir role sahip olduğunu düşündürmektedir. SHL’den izole edilen bu transkriptlerin seviyelerinin sağlıklı dokularda ve embriyonik gelişim dönemlerinde gösterilmesi, kalp fizyolojisi ile ilişkili metabolik yolaklardaki işlevlerinin tanımlanması için önem taşımaktadır.

EXPRESSION ANALYSIS OF MFN2, MT-ATP6, MIDN AND KPNB1 GENES ISOLATED FROM HEART-SPECIFIC SUBTRACTIVE HYBRIDIZATION CDNA LIBRARY IN ADULT, NEONATAL AND EMBRYONIC TISSUES

Objective: Identification of differential gene expression and determination of co-expressed genes is important in the characterization of tissue specific molecular pathways. In our previous studies, we constructed a heart-specific subtractive hybridization cDNA library (SHL) and conducted several functional studies in order to analyze the role of the isolated transcripts in heart tissue. In this study, our aim was to investigate the expression patterns of four selected transcripts from SHL in multiple tissues and, total embryos tissues of different stages.Materials and Methods: Total RNA isolation and cDNA synthesis were performed from 16 different tissues, 5 different stages of total embryos and neonatal heart and skeletal muscle of BALB/c mice. The expression profiles of SHL isolated four genes, mitofusin-2 (Mfn2), mitochondrial ATP synthase 6 (mt-Atp6), midnolin (Midn) and karyopherin (importin) beta 1 (Kpnb1) were analyzed by quantitative real time PCR. Additionally, Northern blot analysis of mt-Atp6 in multiple tissues was performed.Results: Gene expression levels of the four transcripts were higher in neonatal heart than in neonatal skeletal muscle. Similar pattern was observed in adult heart and skeletal muscle. However, mt-Atp6 and Mfn2 genes were over-expressed in heart tissue compared to all other tissues and embryonic stages. Conclusion: Differential expression of the transcripts among different tissues as well as in different embryonic stages suggests that these four genes have crucial roles in cellular physiology. Demonstration of the gene expression levels of the transcripts in the SHL in healthy tissues and embryonic development will contribute to the identification of the function of the genes in related metabolic pathways.

___

  • Calore M, De Windt LJ, Rampazzo A. Genetics meets epigenetics: genetic variants that modulate noncoding RNA in cardiovascular diseases. J Mol Cell Cardiol 2015;89: 27-34.
  • Elia L, Condorelli G. RNA (Epi)genetics in cardiovascular diseases. J Mol Cell Cardiol 2015;89: 11-16.
  • Stanton L.W. Methods to Profile Gene Expression. Trends Cardiovasc Med 2001;11:49–54.
  • Diatchenko L., Lau Y.F., Campbell A.P., Chenchik A., Moqadam F., Huang B., Lukyanov S., Lukyanov K., Gurskaya N., Sverdlov E.D., Siebert P.D. Suppression subtractive hybridization: a method for generating differentially regulated or tissuespecific cDNA probes and libraries 1996; PNAS USA 93:6025-6030.
  • Komurcu-Bayrak E, Ozsait B, Erginel-Unaltuna N. Isolation and analysis of genes mainly expressed in adult mouse heart using subtractive hybridization cDNA library. Mol Biol Rep 2012;39:8065-8074.
  • Hara E, Yamaguchi T, Tahara H, Tsuyama N, Tsurui H, Ide T, Oda K. DNA–DNA subtractive cDNA cloning using oligo(dT)30-Latex and PCR: identification of cellular genes which are overexpressed in senescent human diploid fibroblasts. Anal Biochem 1993;214:58–64.
  • von Stein OD, Thies WG, Hofmann M. A high throughput screening for rarely transcribed differentially expressed genes. Nucleic Acids Res 1997;25:2598–2602.
  • Zhang H, Zhou L, Yang R, Sheng Y, Sun W, Kong X, Cao K. Identification of differentially expressed genes in human heart with ventricular septal defect using suppression subtractive hybridization. Biochem Biophys Res Commun 2006;342:135–144.
  • Özsait Selçuk B. “Subtractive” hibridizasyon kütüphanesinden izole edilen ve kalp gelişiminde rolü olduğu düşünülen genlerin analizi, Yüksek Lisans Tezi, İstanbul Üniversitesi, İstanbul, 2003.
  • Özsait Selçuk B, Kömürcü Bayrak E, Erginal Ünaltuna N. Higher Expression level of Bat3 is associated with silencing of Midn gene in primary 2 mouse cardiomyocytes. Turk J Biol 2016;40: 1295-1302.
  • Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A. 2004;101(16):6062-7
  • Hwang DM, Dempsey AA, Wang RX, Rezvani M, Barrans JD, Dai KS, Wang HY, Ma H, Cukerman E, Liu YQ, Gu JR, Zhang JH, Tsui SK, Waye MM, Fung KP, Lee CY, Liew CC. A genome-based resource for molecular cardiovascular medicine: toward a compendium of cardiovascular genes. Circulation. 1997;96(12):4146-203.
  • Ware, S. M., El-Hassan, N., Kahler, S. G., Zhang, Q., Ma, Y.-W., Miller, E., Wong, B., Spicer, R. L., Craigen, W. J., Kozel, B. A., Grange, D. K., Wong, L.-J. Infantile cardiomyopathy caused by a mutation in the overlapping region of mitochondrial ATPase 6 and 8 genes. J. Med. Genet. 2009;46: 308-314.
  • Santel A, Fuller MT. Control of mitochondrial morphology by a human mitofusin.J Cell Sci. 2001 Mar;114(Pt 5):867-74
  • Yang C, Aye CC, Li X, Diaz Ramos A, Zorzano A, Mora S. Mitochondrial dysfunction in insulin resistance: differential contributions of chronic insulin and saturated fatty acid exposure in muscle cells. Biosci Rep. 2012 Oct;32(5):465-78.
  • Zorzano A, Hernández-Alvarez MI, Sebastián D, Muñoz JP. Mitofusin 2 as a driver that controls energy metabolism and insulin signaling. Antioxid Redox Signal. 2015 Apr 20;22(12):1020-31.
  • Givvimani S, Pushpakumar S, Veeranki S, Tyagi SC.Dysregulation of Mfn2 and Drp-1 proteins in heart failure. Can J Physiol Pharmacol. 2014 Jul;92(7):583-91
  • Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali E L, Zappia M, Nelis E, Patitucci A, Senderek J, Parman Y, Evgrafov O, Jonghe PD, Takahashi Y, Tsuji S, Pericak-Vance MA, Quattrone A, Battaloglu E, Polyakov AV, Timmerman V, Schröder JM, Vance JM. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nature Genet. 36: 449-451, 2004.
  • Tsukahara M, Suemori H, Noguchi S, Ji ZS, Tsunoo H . Novel nucleolar protein, midnolin, is expressed in the mesencephalon during mouse development. Gene. 2000; 254: 45-55.
  • Quan Y, Ji ZL, Wang X, Tartakoff AM, Tao T. Evolutionary and transcriptional analysis of karyopherin beta superfamily proteins. Mol Cell Proteomics. 2008;7(7):1254-69.
  • Loveland K L, Hogarth C, Szczepny A, Prabhu S M, Jans DA. Expression of nuclear transport importins β 1 and β 3 is regulated during rodent spermatogenesis. Biol. Reprod. 2006;74, 67–74.
  • Nachury MV, Maresca TJ, Salmon WC, Waterman-Storer CM, Heald R, Weis K. Importin β is a mitotic target of the small GTPase Ran in spindle assembly. Cell. 2001;104:95-106.