Yatay konumdaki Helianthus annuus L. fidelerinde epibrassinolidin senesens üzerine etkisi

Bu çalışmada vertikal ve horizontal konumdaki Helianthus annuus L. fidelerinin kotiledonlarında meydana gelen senesens üzerine epibrassinolid (eBL) in etkisi incelendi. 14 günlük fidelere 10 M ile M eBL ve oksin taşınma inhibitörü olan 2,3,5- triiyodobenzoik asit (TIBA) çözeltileri püskürtüldü. 15. günde kontrol ve deney grubu bitkilerinin bir kısmı yan yatırılıp horizontal konuma getirilerek bu bitkilerin kotiledonlarının senesens süreci takip edildi. eBL uygulamalarının (özellikle 10 M) vertikal ve horizontal konumdaki bitkilerde senesensi teşvik ettiği, TIBA ile birlikte uygulanması halinde ise özellikle horizontal konumdaki bitkilerin alt kotiledonlarında senesensin geciktiği gözlendi. Bu gözlemler total klorofil ve protein içerikleri ile peroksidaz aktivitesi ölçülerek desteklendi. Brassinosteroidler, TIBA (oksin taşınma inhibitörü) ile beraber uygulanması durumunda senesens üzerine tek başına etki etmeyip ancak oksin varlığında senesensi hızlandırdı. Yatay durumda bırakılan fidelerin gövdelerinde asimetrik dağılım gösteren ve alt kotiledonda daha fazla biriken oksin eBL ile birlikte senesensi hızlandırabilmektedir. Bu araştırmada, vertikal ve horizontal durumda bırakılan fidelerde, eBL ve oksinin birlikte senesens sinyali gibi davranabileceği, alt kotiledonun üst kotiledondan önce ölmesinin asimetrik oksin dağılımından kaynaklanabileceği gösterildi. Bu çalışmada,eBL’nin senesens üzerine teşvik edici etkisinin ancak oksin varlığında gerçekleştiği ortaya konmuştur.

The effect of epibrassinolide on senescence in horizontal sunflower (Helianthus annuus L.) seedlings

This study examined the effect of epibrassinolide (eBL) on senescence occurring in cotyledons of sunflower (Helianthus annuus L.) seedlings, which were kept in vertical and horizontal positions. 10-11 M and 10-9 M eBL and 2,3,5-triiodobenzoic acid (TIBA), an inhibitor of auxin transport, were sprayed to the 14 days old seedlings. From the 15th day on, some of the seedlings from the control and the experimental groups were kept in a horizontal position, and senescence process of the cotyledons of these seedlings was observed. Applications of eBL (especially 10-9 M) were found to have induced senescence both in horizontally and vertically positioned plants. When it was applied with TIBA, a marked delay of senescence was noted in the lower cotyledons of the horizontally positioned plants. Total chlorophyll and protein amounts and peroxidase activity were determined. In case brassinosteroids are applied with TIBA, they do not affect senescence, implying that they accelerate senescence in the presence of auxin. Since auxin is distributed asymmetrically, eBL and auxin accumulated in the lower cotyledons may lead to accelerated senescence. This study showed that eBL and auxin may act as a senescence signal in the vertically and horizontally positioned seedlings, and earlier death of the lower cotyledons than the upper ones may be a result of asymmetrical auxin distribution. In this study, it was revealed that promoting effect of eBL on senescence occured only in the presence of auxin.  Keywords:  eBL – Epibrassinolide, TIBA - 2,3,5-triiodobensoic acid, Auxin, Senescence, Sunflower (Helianthus annuus L.).*Corresponding Author:  Serap Sağlam-Çağ (e-mail:sercag@istanbul.edu.tr)(Received: 13.09.2012 Accepted: 04.03.2013) 

___

  • Ali B., Hasan S.A., Hayat S., Hayat Q., Yadav S., Fariduddin Q. and Ahmad A. (2008) A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environmental and Experimental Botany, 62 (2): 153-159.
  • AndersonJ.W. and Rowan K.S. (1965) Activityof peptidase in tobacco-leaf tissue in relation to senescence. Biochemical Journal, 97: 741-746.
  • Ansari M.I., Lee R-H. and Chen S-C.G. (2005) A novel senescence-associated gene encoding γ-aminobutyric acid (GABA):pyruvate transaminase is upregulated during rice leaf senescence. Physiologia Plantarum, 123: 1-8. Arnon D.I. (1949) Copper enzymes in isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiology, 24 (1): 1-15.
  • Baker J.E (1983) Preservation of Cut Flowers. In: Plant Growth Regulating Chemicals, Nickell L.G., Ed., 2: 177-191. CRC Press, Boca Raton, Florida.
  • Bara M. (1977) The Effect of Horizontal Clinostat on Growth, Water and Protein Contents in Helianthus annus Hypocotyls, Acides Nucleiques et Synthese des Proteines Chez Les Vegetaux. Colloques Internationaux C.N.R.S., 261: 623-633.
  • Birecka H., Briber K.A. and Catalfamo J.L. (1973) Comparative studies on tobacco pith and sweet potato root isoperoxidases in relation to injury, indoleacetic acid and ethylene effects. Plant Physiology, 52: 43-49.
  • Bradford M. M. (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Analytical Biochemistry, 72: 248-254. Breeze E., Harrison E., McHattie S., Hughes L., Hickman R., Hill C., Kiddle S., Kim Y., Penfold C.A., Jenkins D., Zhang C., Morris K., Jenner C., Jackson S., Thomas B., Tabrett A., Legaie, R., Moore J.D., Wild D.L., Ott S., Rand D., Beynon J., Denby K., Mead A., Buchanan-Wollaston V. (2011) High resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. The Plant Cell, 23 (3): 873-894.
  • Chen R., Rosen E., Masson P.H. (1999) Gravitropism in Higher Plants. Plant Physiology, 120: 3433
  • Clouse S.D. (2001) Integration of light and brassinosteroid signals in etiolated seedling growth. Trends in Plant Science, 6(10): 443-445. Clouse S.D. (2002) The Arabidopsis Book. American Society of Plant Biologists, 1-23.
  • Cohen J.D. and Meudt W.T. (1983) Investigation on the mechanism of the brassinosteroid response. Plant Physiology, 72: 691-694.
  • Drivdahl R.H. and Thimann K.V. (1977) Proteases of senescing oat leaves. Plant Physiology, 59: 1059-1063.
  • Eun, J-S. Kuraishi, S. Sakurai N. (1989) Changes in levels of auxin and abscisic acid and the evolution of ethylene in squash hypocotyls after treatment with brassinolide. Plant Cell Physiology, 30: 807-810.
  • Filner B. and Hertel R. (1970) Some aspects of geotropism in coleoptiles. Planta, 94: 333-354.
  • Fujioka S. (1999) Natural Occurence of Brassinosteroids in the Plant Kingdom, In A. Sakurai, T. Yokota, S.D. Clouse eds. Brassinosteroids: Steroidal Plant Hormones, Springer-Verlag, Tokyo.
  • Fujioka S., Noguchi T., Takatsuto S. and Yoshida S. (1998) Activity of brassinosteroids in the dwarf rice lamina inclination bioassay. Phytochemistry, 49: 1841-1848.
  • He Y., Xu R. and Zhao Y. (1996) Enhancement of senescence by epibrassinolide in leaves of mung bean seedling. Acta Phytophysiologica Sinica, 22: 58-62.
  • He Y., Tang W., Swain J., Green A., Jack T. and Gan S. (2001) Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiology, 126: 707-716.
  • Hung K.T. and Kao C.H. (2004) Hydrogen peroxide is necessary for abscisic acid-induced senescence of rice leaves. Journal of Plant Physiology, 161(12): 1347-1357.
  • Gan S. and Amasino R.M. (1997) Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence). Plant Physiology, 113: 313-319.
  • Gören N. and Çağ S. (2007) The effect of indole-3acetic acid and benzyladenine on sequential leaf senescence on Helıanthus annuus L. Seedlings. Biotechnology & Biotechnological Equipment, 21 (3): 322-327.
  • Jiang Y.P., Cheng F., Zhou Y.H., Xia X.J., Shi K., Yu J.Q. (2012) Interactive effects of CO 2 enrichment and brassinosteroid on CO2 assimilation and photosynthetic electron transport in Cucumis sativus. Environmental and Experimental Botany, 75: 98-106.
  • Kanazawa S., Sano S., Koshiba T. and Ushimaru T. (2000) Changes in antioxidative enzymes in cucumber cotyledons during natural senescence: comparison with those during dark-induced senescence. Physiologia Plantarum, 109: 2112
  • Katsumi M. (1985) Interaction of a brassinosteroid with IAA and GA3 in the elongation of cucumber hypocotyl sections. Plant and Cell Physiology, 26: 615-625.
  • Khripach V.A., Zhabinskii V.N. and De Groot A.E. (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI Century. Annals of Botany, 86: 441-447. Kim S-K., Abe H., Little C.H.A, Pharis R.P. (1990) Identification of two brassinosteroids from cambial region of scots pine (Pinus silvestris) by gas chromotography-mass spectrometry, after detection using a dwarf rice lamina inclination bioassay. Plant Physiology, 94: 1709-1713.
  • Kim S-K., Chang S.C., Eun J.L., Chung W-S., Kim Y-S., Hwang S. and Lee J.S. (2000) Involvement of brassinosteroids in gravitropic response of primary root of Maise. Plant Physiology, 123: 997-1004.
  • Leyser O. and Day S. (2003) Mechanisms in Plant Development, Blackwell Science Ltd., 0- 86542742Li J.M., Nagpal P., Vitart V., Mcmorris T.C., Chory J. (1996) A role for brassinosteroids in light dependent development of Arabidopsis. Science, 2722: 398-401.
  • Martin C., and Thimann K.V. (1972) The role for protein synthesis in the senescence of leaves. Plant Physiology, 49: 64-71.
  • Meudt W.T. (1987) Investigations on mechanism of brassinosteroid response: VI. Effect of brassinolide on gravitropism of bean hypocotyls. Plant Physiology, 83: 195-198.
  • Michelini F.M., Ramirez J.A., Berra A., Galagovsky L.R., Alché L.E. (2004) In vivo and in vivo antiherpetic activity of Three new synthetic brassinosteroid analogues. Steroids, 69: 7137
  • Minorsky P.V. (2004) On the inside, interactions between auxin and brassinpsteroids. Plant Physiology, 134: 1293-1294.
  • Mussig C. and Altmann T. (1999) Physiology and molecular mode of action of brassinosteroids. Plant Physiology and Biochemistry, 37(5): 3633
  • Mussig C. and Altmann T. (2001) Brassinosteroid signalling in plants. Trends in Endocrinology & Metabolism, 12 (9): 398-402.
  • Mussig C. and Altmann T. (2003) Genomic brassinosteroid effects. Journal of Plant Growth Regulation, 22: 313-324.
  • Nam H.G. (1997) The molecular genetic analysis of leaf senescence. Current Opinion in Biotechnology, 8: 200-207.
  • Nemhauser J.L. and Chory J. (2004) BRing it on: new insights into the mechanism of brassinosteroid action. Journal of Experimental Botany, 55(395): 265-270.
  • Noodėn L.D. and Penney J.K. (2001) Correlative controls of senescence and plant death in Arabidopsis thaliana. Journal of Experimental Botany, 52(364): 2151-2159.
  • Okatan Y. and Ünal M. (1996) Helianthus annuus L. fidelerinde sırasal yaprak senesensi üzerine TIBA etkisi. XII. Ulusal Biyoloji Kongresi Bildirisi, 1: 22-31.
  • Oputa C.O. and Mazelis M. (1977) Simulated hypogravity and proline incorporation into saltextractable macromolecules from cell walls. Phytochemistry, 16: 673-675.
  • Parish R.W. (1968) Studies on senescing tobacco leaf discs under special reference to peroxidase. Planta, 82: 1-13.
  • Park W.J. (1998) Effect of epibrassinolide on hypocotyl growth of the tomato mutant diageotropica. Planta, 207: 120-124.
  • Parker K.E. and Briggs N.R. (1990) Transport of indole-3-acetic acid during gravitropism in intact maize coleoptiles. Plant Physiology, 94: 1763-1769.
  • Rao S.S.R., Vardhini B.V., Sujatha E. and Anuradha S. (2002) Brassinosteroids a new class of phytohormones. Current Science, 82(10): 123912
  • Sadras V.O., Echarte L. and Andrade F.H. (2000)
  • Profiles of leaf senescence during reproductive growth of sunflower and maize. Annals of Botany, 85: 87-195. Sağlam-Çağ S. (1997) The effects of mineral nutrients and plant growth regulators on the mechanism of sequential leaf senescence in Helianthus annuus L. Ph.D. Thesis. Istanbul University, Institute of Science, Istanbul (In Turkish).
  • Sağlam-Çağ S. (2007) The effect of epibrassinolide on senescence in wheat leaves. Biotechnology & Biotechnological Equipment, 21: 63-65.
  • Sağlam S. and Okatan Y. (1990) Bazı Epigeik Fidelerde Sırasal Yaprak Senesensi Üzerine İncelemeler. X. Ulusal Biyoloji Kongresi, 1: 49-257.
  • Sasse J.M. (1999) Physiological Actions of Brassinosteroids, In: Sakurai, A., Yokota, T., Clouse, S.D. (Eds.), Brassinosteroids-Steroidal Plant Hormones, Springer-Verlag, Tokyo.
  • Sharma I., Pati P.K., Bhardwaj R. (2011) Effect of 24-epibrassinolide on oxidative stress markers induced by nickel-ion in Raphanus sativus L. Acta Physiologiae Plantarum, DOI 10.1007/ s11738-010-0709-1.
  • Srivastava L.M. (2002) Plant Growth and Development, Hormones and Environment, Academic Press, California, 0-12-660570-X.
  • Takeno K. and Pharis R.P. (1982) Brassinosteroidinduced bending of the leaf lamina of dwarf rice seedlings. An auxin-mediated phenomenon. Plant Cell Physiology, 23: 1275-1281.
  • Tanaka K., Nakamura Y., Asamı T., Yoshıda S., Matsuo T., Okamoto S. (2003) Physiological roles of brassinosteroids in early growth of Arabidopsis. Journal of Plant Growth Regulation, 22: 259-271.
  • Thayer S.S., Choe H.T., Tang A. and Huffaker R.C. (1987) Protein Turnover during Senescence, Plant Senescence: Its Biochemistry and Physiology, Thomson, W.W., Nothnagel Eugene A., and Huffaker, R.C., eds., 71-80.
  • Ünal M. (1991) The effect of gravity copensation on cell wall extencibility, reducing sugars and starch content in Helianthus annuus seedlings. Istanbul University Faculty of Science Journal of Biology, 55: 1-28.
  • Ünal M. and Okatan Y. (1996) Yerçekimi dengelenmesinin Helianthus annuus L. fidelerinde sırasal yaprak senesensine etkisi. XIII. Ulusal Biyoloji Kongresi,1: 32-41.
  • Van Overbeek, J., Olivio G.D. and De Vasques E.M.C. (1945) A rapid extraction method for free auxin and its application on geotropic reactions of bean seedlings and sugar-cane nodes. Botanical Gazette, 106: 440-451.
  • Vardhini B.V. and Rao S.S.R. (2002) Acceleration of ripening of tomato pericap discs by brassinosteroids. Phytochemistry,16: 843-847.
  • Vardhini B.V., Sujatha E. and Rao S.S.R. (2012) Influence of brassinosteroids on metabolites of Raphanus sativus L. Journal of Phytology, 4(2): 45-47.
  • Vleesschauwer D., Buyten E.V., Satoh K., Balidion J., Mauleon R., Choi I., Vera-Cruz C., Kikuchi S., Hofte M. (2012) Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice. Plant Physiology, 112.
  • Verma A., Malik C. P., and Grupta V. K. (2012) Invitro effects of brassinosteroids on the growth and antioxidant enzyme activities in groundnut. International Scholarly Research Network ISRN Agronomy, Article ID 356485, 2012: 8 doi:5402/2012/356485.
  • Walcher C.L. and Nemhauser J.L. (2012) Bipartite promoter element required for auxin response. Plant Physiology, 158 (1): 273–282.
  • Yokota T. (1997) The structure, biosynthesis and function of brassinosteroids. Trends in Plant Science, 2: 137-143.
  • Yopp J.H., Mandava N.B. and Sasse J.M. (1981) Brassinolide, a growth-promoting steroidal lactone. Physiologia Plantarum, 53: 445-452. Yusuf M., Fariduddin Q. and Ahmad A. (2012) 24-Epibrassinolide modulates growth, nodulation, antioxidant system, and osmolyte in tolerant and sensitive varieties of Vigna radiata under different levels of nickel: A shotgun approach. Plant Physiology and Biochemistry, 57: 143- 153. Zhang Z., Li G., Gao H., Zhang L., Yang C., Liu P., Meng Q. (2012) Characterization of Photosynthetic Performance during Senescence in Stay-Green and Quick-Leaf-Senescence Zea mays L. Inbred Lines. PLoS One. 7(8): 1-10e42936. Epub Aug 10.
  • Zhao B., Li J. (2012) Regulation of brassinosteroid biosynthesis and inactivation. Institute of Botany, Chinese Academy of Sciences, DOI:10.1111/ j.1744-7909.2012.01168.x.
  • Zhu W., Wang H., Fujioka S., Zhou T., Tian H., Tian W., Wang X. (2012) Homeostasis of brassinosteroids regulated by DRL1, a putative acyl-transferase in Arabidopsis. Molecular Plant, 30: 144.