A Fourier Transform Infrared Spectroscopic Investigation of Macrovipera lebetina lebetina and M. l. obtusa Crude Venoms

Objective: Snake venoms are rich sources of bioactive molecules and have been investigated using various bioanalytical methods. Fourier transform infrared (FTIR) spectroscopy is a sensitive method that can be used to analyze biological samples. The aim of this study is to apply the FTIR spectroscopy method for the characterization of snake venom. Materials and Methods: The study characterized the lyophilized crude venoms of Macrovipera lebetina lebetina and M. l. obtusa by FTIR spectroscopy coupled with attenuated total reflectance (ATR) method in the mid-infrared region and compared the spectra between the two subspecies. The band area and intensity values were calculated for comparison and wavenumbers were detected by automated peak picking. Additionally, the study analyzed the secondary structure of venom proteins by using the second derivative spectra. Results: The study detected fourteen major and minor peaks in absorbance spectra which were assigned to various biomolecules such as proteins, carbohydrates, and nucleic acids. Four major sub-bands were observed in the second derivative spectra of Amide I-II region indicating different protein secondary structures. It was observed that there are some quantitative differences and peak shifts between the spectra of venoms of two subspecies, indicating the alteration of biomolecules. Conclusion: To the best of our knowledge, this is the first report of the use of the FTIR-ATR spectroscopy method focusing solely on the characterization of crude snake venoms in literature, accompanied with detailed peak assignment and protein secondary structure analysis. As a preliminary reference study, the results showed the usefulness of FTIR-ATR spectroscopy for the physicochemical characterization of lyophilized snake venom.

___

  • 1. Tu AT. Overview of snake venom chemistry. Singh BR, Tu AT, editors. Natural Toxins II. New York: Plenum Press; 1996. pp. 37–62.
  • 2. Chippaux JP. Snake venoms and envenomations. 1st ed. Florida: Krieger Publishing Company; 2006.
  • 3. Igci N, Ozel Demiralp D. A preliminary investigation into the venom proteome of Macrovipera lebetina obtusa (Dwigubsky, 1832) from Souheastern Anatolia by MALDI-TOF mass spectrometry and comparison of venom protein profiles with Macrovipera lebetina lebetina (Linnaeus, 1758) from Cyprus by 2D-PAGE. Arch Toxicol 2012; 86(3): 441–51.
  • 4. Bieber AB. Metal and Nonprotein Constituents of Snake Venoms. Lee CY, editor. Snake venoms. Handbook of experimental pharmacology. Berlin, Heidelberg: Springer; 1979. pp. 295–306.
  • 5. Villar-Briones A, Aird SD. Organic and peptidyl constituents of snake venoms: The picture is vastly more complex than we imagined. Toxins 2018; 10(392): 1–49.
  • 6. Lewis RJ, Garcia ML. Therapeutic potential of venom peptides. Nat Rev Drug Discov 2003; 2(10): 790–802.
  • 7. Vetter I, Davis JL, Rash LD, Anangi R, Mobli M, Alewood PF, et al. Venomics: a new paradigm for natural products-based drug discovery. Amino Acids 2011; 40(1): 15–28.
  • 8. Vonk FJ, Jackson K, Doley R, Madaras F, Mirtschin PJ, Vidal N. Snake venom: From fieldwork to the clinic: Recent insights into snake biology, together with new technology allowing high-throughput screening of venom, bring new hope for drug discovery. Bioessays 2011; 33(4): 269–79.
  • 9. Atatür MK, Göçmen B. Kuzey Kıbrıs’ın kurbağa ve sürüngenleri– amphibians and reptiles of Northern Cyprus. 1st ed. Izmir: Ege Üniversitesi Yayınları Fen Fakültesi Kitaplar Serisi No: 170; 2001.
  • 10. Mallow D, Ludwig D, Nilson G. True vipers: Natural history and toxinology of old world vipers. 1st ed. Florida: Krieger Publishing Company; 2003.
  • 11. Budak A, Göçmen B. Herpetoloji. 2nd ed. Izmir: Ege Üniversitesi Yayınları Fen Fakültesi Yayın No: 194; 2008.
  • 12. Stümpel N, Joger U. Recent advances in phylogeny and taxonomy of Near and Middle Eastern Vipers – an update. ZooKeys 2009; 31: 179–91.
  • 13. Göçmen B, Atatür MK, Budak A, Bahar H, Yildiz MZ, Alpagut-Keskin N. Taxonomic notes on the snakes of Northern Cyprus, with observations on their morphologies and ecologies. Anim Biol 2009; 59: 1–30.
  • 14. Swaroop S, Grab B. Snakebite mortality in the World. Bull World Health Organ 1954; 10(1): 35–76.
  • 15. Cesaretli Y, Ozkan O. Snakebites in Turkey: epidemiological and clinical aspects between the years 1995 and 2004. J Venom Anim Toxins Incl Trop Dis 2010; 16(4): 579–86.
  • 16. Sherman Hsu CP. Infrared Spectroscopy. Settle FA, editor. Handbook of instrumental techniques for analytical chemistry. New Jersey: Prentice Hall; 1997. pp. 247–83.
  • 17. Özel Demiralp FD, İğci N, Peker S, Ayhan B. Temel proteomik stratejiler. 1st ed. Ankara: Ankara Üniversitesi Yayınevi; 2014.
  • 18. Severcan F, Akkas SB, Turker S, Yucel R. Methodological approaches from experimental to computational analysis in vibrational spectroscopy and microspectroscopy. Severcan F, Haris PI, editors. Vibrational spectroscopy in diagnosis and screening. Amsterdam: IOS Press; 2012. pp. 12–52.
  • 19. Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, et al. Using fourier transform IR spectroscopy to analyze biological materials. Nat Protoc 2014; 9(8): 1771–91.
  • 20. Igci N, Sharafi P, Ozel Demiralp D, Demiralp CO, Yuce A, Dokmeci Emre S. Application of Fourier transform infrared spectroscopy to biomolecular profiling of cultured fibroblast cells from Gaucher disease patients: A preliminary investigation. Adv Clin Exp Med 2017; 26(7): 1053–61.
  • 21. Bozdag G, Igci N, Calis P, Ayhan B, Ozel Demiralp D, Mumusoglu S, et al. Examination of cervical swabs of patients with endometriosis using Fourier transform infrared spectroscopy. Arch Gynecol Obstet 2019; 299(5): 1501–08.
  • 22. Haris PI, Severcan F. FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J Mol Catal B Enzym 1999; 7(1–4): 207–21.
  • 23. Bazaa A, Marrakchi N, El Ayeb M, Sanz L, Calvete JJ. Snake venomics: comparative analysis of the venom proteomes of the Tunisian snakes Cerastes cerastes, Cerastes vipera and Macrovipera lebetina. Proteomics 2005; 5(16): 4223–35.
  • 24. Arıkan H, Göçmen B, Kumlutaş Y, Alpagut-Keskin N, Ilgaz Ç, Yıldız MZ. Electrophoretic characterisation of the venom samples obtained from various Anatolian snakes (Serpentes: Colubridae, Viperidae, Elapidae). North-West J Zool 2008; 4(1): 16–28.
  • 25. Sanz L, Ayvazyan N, Calvete JJ. Snake venomics of the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei. J Proteomics 2008; 71: 198–209.
  • 26. Calvete JJ, Sanz L, Angulo Y, Lomonte B, Gutiérrez JM. Venoms, venomics, antivenomics. FEBS Lett 2009; 583(11): 1736–43.
  • 27. Nalbantsoy A, Hempel BF, Petras D, Heiss P, Göçmen B, İğci N, Yıldız MZ, Süssmuth RD. Combined venom profiling and cytotoxicity screening of the Radde’s mountain viper (Montivipera raddei) and mount bulgar viper (Montivipera bulgardaghica) with potent cytotoxicity againts human A549 lung carcinoma cells. Toxicon 2017; 135: 71–83.
  • 28. Petras D, Hempel BF, Göçmen B, Karis M, Whiteley G, Wagstaff SC, et al. Intact protein mass spectrometry revals intraspecies variations in venom composition of a local population of Vipera kaznakovi in north eastern Turkey. J Proteomics 2019; 199: 31– 50.
  • 29. Siigur J, Aaspõllu A, Siigur E. Biochemistry and pharmacology of proteins and peptides purified from the venoms of the snakes Macrovipera lebetina subspecies. Toxicon 2019; 158: 16–32.
  • 30. Aird SD, Middaugh CR, Kaiser II. Spectroscopic characterization of textilotoxin, a presynaptic neurotoxin from the venom of the australian eastern brown snake (Pseudonaja t. textilis). Biochim Biophys Acta Protein Struct Mol Enzymol 1989; 997(3): 219–23.
  • 31. Lamthanh H, Léonetti M, Nabedryk E, Ménez A. CD and FTIR studies of an immunogenic disulphide cyclized octadecapeptide, a fragment of a snake curaremimetic toxin. Biochim Biophys Acta Protein Struct Mol Enzymol 1993; 1203(2): 191–8.
  • 32. Cecchini AL, Soares AM, Cecchini R, Oliveira AHC, Ward RJ, Giglio JR, et al. Effect of crotapotin on the biological activity of Asp49 and Lys49 phospholipases A2 from Bothrops snake venoms. Comp Biochem Physiol C Toxicol Pharmacol 2004; 138(4): 429–36.
  • 33. Oliveira KC, Spencer PJ, Ferreira Jr RS, Nascimento N. New insights into the structural characteristics of irradiated crotamine. J Venom Anim Toxins Incl Trop Dis 2015; 21: 14.
  • 34. Bhowmik T, Saha PP, Sarkar A, Gomes A. Evaluation of cytotoxicity of a purified venom protein from Naja kaouthia (NKCT1) using gold nanoparticles for targeted delivery to cancer cell. Chem Biol Interact 2017; 261: 35–49.
  • 35. Mohammadpour Dounighi M, Mehrabi M, Avadi MR, Zolfagharian H, Rezayat M. Preparation, characterization and stability investigation of chitosan nanoparticles loaded with the Echis carinatus snake venom as a novel delivery system. Arch Razi Inst 2015; 70(4): 269–77.
  • 36. Mirzaei F, Mohammadpour Dounighi N, Avadi MR, Rezayat M. A new approach to antivenom preparation using chitosan nanoparticles containing Echis carinatus venom as a novel antigen delivery system. Iran J Pharm Res 2017; 16(3): 858–67.
  • 37. Shafiga T, Huseyn A. Radiobiological and biophysical showing of venom of Macrovipera lebetina obtusa. IJREH 2017; 1(3): 1–12.
  • 38. Adigüzel Y, Haris PI, Severcan F. Screening of proteins in cells and tissues by vibrational spectroscopy. Severcan F, Haris PI, editors. Vibrational spectroscopy in diagnosis and screening. Amsterdam: IOS Press; 2012. pp. 53–108.
  • 39. Severcan F, Toyran N, Kaptan N, Turan B. Fourier transform infrared study of the effect of diabetes on rat liver and heart tissues in the C–H region. Talanta 2000; 53(1): 55–9.
  • 40. Movasaghi Z, Rehman S, Rehman I. Fourier transform infrared (ftir) spectroscopy of biological tissues. Appl Spectrosc Rev 2008; 43(2): 134–79.
  • 41. Severcan F, Bozkurt O, Gurbanov R, Gorgulu G. FT-IR spectroscopy in diagnosis of diabetes in rat animal model. J Biophotonics 2010; 3(8–9): 621–31.
  • 42. Rehman I, Movasaghi Z, Rehman S. Vibrational spectroscopy for tissue analysis. 1st ed. Florida: CRC Press, 2013. 43. Jackson M, Mantsch HH. The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol 1995; 30(2): 95–120.
  • 44. Goormaghtigh E, Ruysschaert J-M, Raussens V. Evaluation of the information content in infrared spectra for protein secondary structure determination. Biophys J 2006; 90(8): 2946–57.
  • 45. Barth A. Infrared spectroscopy of proteins. Biochim Biophys Acta 2007; 1767(9): 1073–101.
  • 46. Stuart B. Biological applications of infrared spectroscopy. 1st ed. West Sussex: John Wiley & Sons, 1997.
  • 47. Cheung KT, Trevisan J, Kelly JG, Ashton KM, Stringfellow HF, Taylor SE, et al. Fourier-transform infrared spectroscopy discriminates a spectral signature of endometriosis independent of inter-individual variation. Analyst 2011; 136(10): 2047–55.
  • 48. Bellisola G, Sorio C. Infrared spectroscopy and microscopy in cancer research and diagnosis. Am J Cancer Res 2012; 2(1): 1–21.
  • 49. Garip S, Bozoglu F, Severcan F. Differentiation of mesophilic and thermophilic bacteria with fourier transform infrared spectroscopy. Appl Spectrosc 2007; 61(2): 186–92.
  • 50. Maity JP, Kar S, Lin C-M, Chen C-Y, Chang Y-F, Jean J-S, et al. Identification and discrimination of bacteria using Fourier transform infrared spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 2013; 116: 478–84.
  • 51. Turker Gorgulu S, Dogan M, Severcan F. The characterization and differentiation of higher plants by fourier transform infrared spectroscopy. Appl Spectrosc 2007; 61(3): 300–8.
  • 52. Gok S, Severcan M, Goormaghtigh E, Kandemir I, Severcan F. Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food Chem 2015; 170: 234–40.
  • 53. Deniz E, Güneş Altuntaş E, Ayhan B, İğci N, Özel Demiralp D, Candoğan K. Differentiation of beef mixtures adulterated with chicken or turkey meat using FTIR spectroscopy. J Food Process Preserv 2018; 42: e13767.
  • 54. Krimm S, Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides and proteins. Anfinsen CB, Edsall JT, Richards FM, editors. Advances in protein biochemistry, vol. 38. New York: Academic Press; 1986. pp. 181–364.
  • 55. Jebali J, Fakhfekh E, Morgen M, Srairi-Abid N, Majdoub H, Gargouri A, et al. Lebecin, a new C-type lectin like protein from Macrovipera lebetina venom with anti-tumor activity against the breast cancer cell line MDA-MB231. Toxicon 2014; 86: 16–27.
  • 56. Tonello F, Rigoni M. Cellular Mechanisms of Action of Snake Phospholipase A2 Toxins. In: Gopalakrishnakone P, Inagaki H, Vogel CW, Mukherjee A, Rahmy T, editors. Snake Venoms. Dordrecht: Springer, 2017: 49–65.
  • 57. Takeda S. ADAM and ADAMTS family proteins and snake venom metalloproteinases: A structural overview. Toxins 2016; 8(155): 1–38.
  • 58. Zeng F, Shen B, Zhu Z, Zhang P, Ji Y, Niu L, et al. Crystal structure and activating effect on RyRs of AhV_TL-I, a glycosylated thrombin-like enzyme from Agkistrodon halys snake venom. Arch Toxicol 2013; 87(3): 535–45.
  • 59. İğci N, Özel Demiralp FD, Yıldız MZ. Cytotoxic activities of the crude venoms of Macrovipera lebetina lebetina from Cyprus and M. l. obtusa from Turkey (Serpentes: Viperidae) on human umbilical vein endothelial cells. Comm J Biol 2019; 3(2): 110–3.
  • 60. Chippaux JP, Williams V, White J. Snake venom variability: Methods of study, results and interpretation. Toxicon 1991; 29(11): 1279– 303.
  • 61. Devi A. The protein and nonprotein constituents of snake venoms. Bücherl W, Buckley EE, Deulofeu V, editors. Venomous animals and their venoms. New York: Academic Press; 1968. pp. 119–65.
  • 62. Gowda DC, Davidson EA. Structural features of carbohydrate moieties in snake venom glycoproteins. Biochem Biophys Res Commun 1992; 182(1): 294–301.
  • 63. Currier RB, Calvete JJ, Sanz L, Harrison RA, Dowley PD, Wagstaff SC. Unusual stability of messenger RNA in snake venom reveals gene expression dynamics of venom replenishment. PLoS ONE 2012; 7(8): e41888.
  • 64. Modahl CM, Mackessy SP. Full-length venom protein cDNA sequences from venom-derived mRNA: Exploring compositional variation and adaptive multigene evolution. PLoS Negl Trop Dis 2016; 10(6): e0004587.
  • 65. Pook CE, McEwing R. Mitochondrial DNA sequences from dried snake venom: a DNA barcoding approach to the identification of venom samples. Toxicon 2005; 46(7): 711-5.
  • 66. Smith CF, McGlaughlin ME, Mackessy SP. DNA barcodes from snake venom: a broadly applicable method for extraction of DNA from snake venoms. Biotechniques 2018; 65(6): 339–45.